File size: 10,662 Bytes
272be4b
9d2cfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272be4b
9d2cfda
 
 
 
5d57e40
9d2cfda
5d57e40
2fb293b
 
 
 
 
 
5d57e40
 
 
 
 
9d2cfda
 
 
 
5d57e40
 
9d2cfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c345ff
9d2cfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d57e40
 
9d2cfda
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF


CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path("9em124t2-499968")
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
CAPTION_TYPE_MAP = {
	("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
	("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
	("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
	("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
	("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
	("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],

	("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
	("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
	("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],

	("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
	("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
	("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
}

HF_TOKEN = os.environ.get("HF_TOKEN", None)


class ImageAdapter(nn.Module):
	def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
		super().__init__()
		self.deep_extract = deep_extract

		if self.deep_extract:
			input_features = input_features * 5

		self.linear1 = nn.Linear(input_features, output_features)
		self.activation = nn.GELU()
		self.linear2 = nn.Linear(output_features, output_features)
		self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
		self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))

		# Mode token
		#self.mode_token = nn.Embedding(n_modes, output_features)
		#self.mode_token.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

		# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
		self.other_tokens = nn.Embedding(3, output_features)
		self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3

	def forward(self, vision_outputs: torch.Tensor):
		if self.deep_extract:
			x = torch.concat((
				vision_outputs[-2],
				vision_outputs[3],
				vision_outputs[7],
				vision_outputs[13],
				vision_outputs[20],
			), dim=-1)
			assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"  # batch, tokens, features
			assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
		else:
			x = vision_outputs[-2]

		x = self.ln1(x)

		if self.pos_emb is not None:
			assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
			x = x + self.pos_emb

		x = self.linear1(x)
		x = self.activation(x)
		x = self.linear2(x)

		# Mode token
		#mode_token = self.mode_token(mode)
		#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
		#x = torch.cat((x, mode_token), dim=1)

		# <|image_start|>, IMAGE, <|image_end|>
		other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
		assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
		x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)

		return x

	def get_eot_embedding(self):
		return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)



# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model

if (CHECKPOINT_PATH / "clip_model.pt").exists():
	print("Loading VLM's custom vision model")
	checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
	checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
	clip_model.load_state_dict(checkpoint)
	del checkpoint

clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")


# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

# LLM
print("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists:
	print("Loading VLM's custom text model")
	text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16)
else:
	text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)

text_model.eval()

# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
image_adapter.eval()
image_adapter.to("cuda")


# @spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int) -> str:
	torch.cuda.empty_cache()

	# 'any' means no length specified
	length = None if caption_length == "any" else caption_length

	if isinstance(length, str):
		try:
			length = int(length)
		except ValueError:
			pass

	# 'rng-tags' and 'training_prompt' don't have formal/informal tones
	if caption_type == "rng-tags" or caption_type == "training_prompt":
		caption_tone = "formal"

	# Build prompt
	prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
	if prompt_key not in CAPTION_TYPE_MAP:
		raise ValueError(f"Invalid caption type: {prompt_key}")

	prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
	print(f"Prompt: {prompt_str}")

	# Preprocess image
	#image = clip_processor(images=input_image, return_tensors='pt').pixel_values
	image = input_image.resize((384, 384), Image.LANCZOS)
	pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
	pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
	pixel_values = pixel_values.to('cuda')

	# Tokenize the prompt
	prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)

	# Embed image
	with torch.amp.autocast_mode.autocast('cuda', enabled=True):
		vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
		image_features = vision_outputs.hidden_states
		embedded_images = image_adapter(image_features)
		embedded_images = embedded_images.to('cuda')
	
	# Embed prompt
	prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
	assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
	embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
	eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)

	# Construct prompts
	inputs_embeds = torch.cat([
		embedded_bos.expand(embedded_images.shape[0], -1, -1),
		embedded_images.to(dtype=embedded_bos.dtype),
		prompt_embeds.expand(embedded_images.shape[0], -1, -1),
		eot_embed.expand(embedded_images.shape[0], -1, -1),
	], dim=1)

	input_ids = torch.cat([
		torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
		torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
		prompt,
		torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
	], dim=1).to('cuda')
	attention_mask = torch.ones_like(input_ids)

	#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
	#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
	generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None)   # Uses the default which is temp=0.6, top_p=0.9

	# Trim off the prompt
	generate_ids = generate_ids[:, input_ids.shape[1]:]
	if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
		generate_ids = generate_ids[:, :-1]

	caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]

	return caption.strip()


with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo:
	gr.HTML(TITLE)

	with gr.Row():
		with gr.Column():
			input_image = gr.Image(type="pil", label="Input Image")

			caption_type = gr.Dropdown(
				choices=["descriptive", "training_prompt", "rng-tags"],
				label="Caption Type",
				value="descriptive",
			)

			caption_tone = gr.Dropdown(
				choices=["formal", "informal"],
				label="Caption Tone",
				value="formal",
			)

			caption_length = gr.Dropdown(
				choices=["any", "very short", "short", "medium-length", "long", "very long"] +
						[str(i) for i in range(20, 261, 10)],
				label="Caption Length",
				value="any",
			)

			gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags` and `training_prompt`.")

			run_button = gr.Button("Caption")
		
		with gr.Column():
			output_caption = gr.Textbox(label="Caption")
	
	run_button.click(fn=stream_chat, inputs=[input_image, caption_type, caption_tone, caption_length], outputs=[output_caption])


if __name__ == "__main__":
    demo.launch()