File size: 22,262 Bytes
33d9042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Multi-lang text to semantic token modeling.ipynb.

# %% auto 0
__all__ = ['load_dataset', 'rand', 'Tunables', 'T2SEmbedding', 'Encoder', 'TSARTransformer', 'make_model']

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 1
import dataclasses
import random
import math
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import record_function

from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr
from fastprogress import progress_bar

from pathlib import Path

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 2
from whisperspeech.modules import *
from whisperspeech import languages

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 6
import re

class CharTokenizer:
    """Trivial tokenizer – just use UTF-8 bytes"""
    eot = 0
    
    def encode(self, txt):
        return list(bytes(txt.strip(), 'utf-8'))

    def decode(self, tokens):
        return bytes(tokens).decode('utf-8')
    
def tokenizer(ikey, okey, length):
    """Tokenizes a transcript"""
    tok = CharTokenizer()
    def _tokenizer(samples):
        for s in samples:
            toks = torch.tensor(tok.encode(s[ikey]))
            s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot)
            yield s
    return _tokenizer

def ar_padder(ikey, okey, length, pad_token):
    """Pads the tokens for autoregresive training"""
    import numpy as np

    def _ar_padder(samples):
        for s in samples:
            toks = s[ikey]
            if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks)
            toks = toks.to(torch.long)
            s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token)
            s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token)
            yield s
    return _ar_padder

def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25):
    """Adds the characters per second metric to the input data"""
    def _char_per_seconder(samples):
        for s in samples:
            secs = s[stoks_key].shape[-1] / stoks_per_second
            s[cps_key] = len(s[txt_key]) / secs
            yield s
    return _char_per_seconder

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 7
def load_dataset(
    txt_shard_spec:str,    # transcription webdataset shards
    stoks_shard_dir:str,   # stoks webdataset base dir
    samples:int,           # samples per epoch
    txt_kind:str='small.en-txt',
    vq_codes:int=4096,
    language:str='en',
    weight:float=1,
    validation:bool=False,
    exclude_files:str=None,
):
    import webdataset as wds
    from whisperspeech import utils

    shards = utils.shard_glob(txt_shard_spec)
    excludes = {x for file in exclude_files.split() for x in utils.readlines(file)} if exclude_files else set()
    
    language = languages.to_id(language)
    
    def set_language(x):
        x['language'] = language
        return x
    
    same_on_all_nodes = lambda urls: urls # will only be used for validation
    ds = wds.WebDataset(shards, resampled=not validation, nodesplitter=same_on_all_nodes).compose(
        wds.decode(),
        utils.merge_in(utils.derived_dataset('eqvad-stoks', base=txt_kind, suffix='', dir=stoks_shard_dir)),
        # discard validation samples, select samples > .5s
        wds.select(lambda s: s['__key__'] not in excludes and s['stoks.npy'].shape[-1] > 12),
        tokenizer('txt', 'ttoks', length=550),
        ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1),
        ar_padder('ttoks', 'ttoks', length=550, pad_token=CharTokenizer.eot),
        char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25),
        wds.map(set_language),
        wds.to_tuple('in_ttoks', 'out_ttoks', 'language', 'cps', 'in_stoks', 'out_stoks'),
        wds.shuffle(20000, initial=20000),
        wds.batched(64)
    )
    if validation:
        ds = ds.slice(samples // 64)
    ds.total_samples = samples
    ds.stoks_len = 750
    ds.stoks_codes = vq_codes
    ds.ttoks_len = 550
    ds.weight = weight

    return ds

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 14
def rand(start, end):
    return random.random() * (end - start) + start

@dataclasses.dataclass
class Tunables:
    init_std :float = 1
    embeddings_std :float = .01
    embeddings_lr_scale: float = 5
    embedding_projector_lr_scale: float = 2.5
    output_mult :float = .35
    query_mult :float = 1
    encoder_depth_ratio :float = 0.25
    eot_dropout_p :float = .5
    cps_input: bool = True
    cps_bins: int = 32
        
    lr0 :float = 1.5e-3
    clip_gradient_norm :float = .2
    weight_decay :float = 1e-1
    warmup_steps :float = 4000

    random :bool = False

    def __post_init__(self):
        # randomize the hyperparams if requested
        if self.random:
            self.init_std = 10**rand(-1,1)
            self.embeddings_std = 10**rand(-3,-.7)
            self.embeddings_lr_scale = rand(2,6)
            self.output_mult = rand(0.25,0.65)
            self.query_mult = 2**rand(-2,3)
            self.encoder_depth_ratio = 0.25
            
            self.lr0 = rand(1,5)*1e-3
            self.clip_gradient_norm = 10**rand(-3,0)
            self.warmup_steps = 100*(10**rand(1,1.85))

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 15
class T2SEmbedding(nn.Module):
    def __init__(self, length=1500, codes=1024, width=384, pos_embs=None, stoks_width=384):
        super().__init__()
        self.embedding = FlexEmbeddings(codes, width, special_codes=1, frozen_width=stoks_width)
        if pos_embs is None: pos_embs = sinusoids(length, width)
        self.register_buffer("positional_embedding", pos_embs)
    
    def forward(self, Stoks, xenc, cps=None, offset=0):
        Sembs = self.embedding(Stoks)
        xin = (Sembs + self.positional_embedding[offset : offset + Sembs.shape[1]]).to(xenc.dtype)
        if cps is not None: xin = xin + cps
        return xin, offset

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 16
class Encoder(nn.Module):
    def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()):
        super().__init__()
        self.emb_width = emb_width
        
        self.embedding = FlexEmbeddings(codes, width, frozen_width=emb_width)

        if pos_embs is None: pos_embs = sinusoids(length, width)
        self.register_buffer("positional_embedding", pos_embs)

        self.layers = nn.ModuleList([
            ResidualAttentionBlock(width, n_head,
                                   qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth)
        ])

        self.ln_post = LayerNorm(width)
        
        mask = torch.empty(length, length).fill_(-torch.inf).triu_(1)
        self.register_buffer("mask", mask, persistent=False)
        
    def forward(self, Stoks, positions, lang_emb=None):
        xin = self.embedding(Stoks)

        if lang_emb is not None: xin += lang_emb
        
#         assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape"
        x = (xin +
             self.positional_embedding[positions]).to(xin.dtype)

        for l in self.layers: x = l(x, positions, causal=False, mask=self.mask)
        
        return self.ln_post(x)

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 17
class TSARTransformer(nn.Module):
    def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4,
                 ttoks_len=200, ttoks_codes=256, ttoks_width=None,
                 stoks_len=1500, stoks_codes=1024, stoks_width=None,
                 tunables=Tunables()):
        super().__init__()
        store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes")

        width = n_head * head_width
        self.width = width
        self.base_width = 3 * head_width
        self.tunables = tunables
        if self.stoks_width is None: self.stoks_width = self.width
        if self.ttoks_width is None: self.ttoks_width = self.width
        
        self.lang_embeddings = nn.Embedding(len(languages.languages), width)
        if tunables.cps_input:
            self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width)
        else:
            self.cps_embeddings = None        
        
        encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
        decoder_depth = depth * 2 - encoder_depth
        tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables)
        self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args)
        self.embeddings = T2SEmbedding(length=stoks_len, codes=stoks_codes, width=width, stoks_width=self.stoks_width)

        self.decoder = BaseDecoder(
            length=stoks_len, 
            depth=decoder_depth,
            qk_scale=tunables.query_mult*8/math.sqrt(width/n_head),
            width=width, n_head=n_head, ffn_mult=ffn_mult,
        )
        self.tokenizer = None
        
        self.apply(self.init_transformer)

    def load_frozen_semantic_embeddings(self, vqmodel):
        self.embeddings.embedding.set_frozen_embeddings(vqmodel.rq.layers[0]._codebook.embed[0])

    def setup(self, device):
        pass

    def init_transformer(self, m):
        if isinstance(m, LinearHead):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, QueryHead):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            torch.nn.init.constant_(m.weight, 0)
        elif isinstance(m, nn.Embedding):
            m.no_weight_decay = True
            m.lr_scale = self.tunables.embeddings_lr_scale
            std = self.tunables.embeddings_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, EmbeddingProjector):
            m.lr_scale = self.tunables.embedding_projector_lr_scale
            std = self.tunables.init_std
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.Linear):
            m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
            std = self.tunables.init_std / m.weight.shape[1]
            torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
            if m.bias is not None:
                torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
        elif isinstance(m, nn.LayerNorm):
            m.no_weight_decay = True
            torch.nn.init.constant_(m.bias, 0)
            torch.nn.init.constant_(m.weight, 1)
    
    def _embed_cps(self, cpss):
        if self.cps_embeddings is None: return None

        cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long)
        cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1
        return self.cps_embeddings(cps_bin).unsqueeze(1)

    def run_encoder(self, in_ttoks, languages, cpss):
        if len(languages.shape) != 3: lang_embs = self.lang_embeddings(languages)
        else: lang_embs = languages
        if len(lang_embs.shape) == 2: lang_embs = lang_embs.unsqueeze(1)
        
        cps_emb = self._embed_cps(cpss)

        with record_function("encoder"):
            positions = torch.arange(0, in_ttoks.shape[1], device=in_ttoks.device)
            xenc = self.encoder(in_ttoks.to(torch.long), positions, lang_emb=lang_embs)

        return xenc, positions, cps_emb
    
    def forward(self, in_ttoks, out_ttoks, languages, cpss, in_stoks, in_stoks_positions, out_stoks=None, loss=True, offset=None, xenc=None, xenc_positions=None, cps_emb=None):
        if xenc is None:
            xenc, cps_emb = self.run_encoder(in_ttoks, languages, cpss)

        with record_function("decoder"):
            x = (self.embeddings.embedding(in_stoks) + 
                 self.embeddings.positional_embedding[in_stoks_positions] +
                 cps_emb).to(xenc[0].dtype)
            x = self.decoder(x, in_stoks_positions, xenc, xenc_positions)
            logits = self.embeddings.embedding.unembed(x)
            logits = logits * self.tunables.output_mult / (self.width / self.base_width)

        if loss is not None:
            enc_logits = self.encoder.embedding.unembed(xenc[0])
            enc_logits = enc_logits * self.tunables.output_mult / (self.width / self.base_width)
            with record_function("loss"):
                loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)
                if self.training:
                    loss += 0.1 * F.cross_entropy(enc_logits.transpose(-1,-2), out_ttoks)
                
        return logits, loss

    #
    # inference
    #
    @classmethod
    def load_model(cls, ref="collabora/whisperspeech:t2s-small-en+pl.model",
                   repo_id=None, filename=None, local_filename=None):
        if repo_id is None and filename is None and local_filename is None:
            if ":" in ref:
                repo_id, filename = ref.split(":", 1)
            else:
                local_filename = ref
        if not local_filename:
            local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
        spec = torch.load(local_filename)
        model = cls(**spec['config'], tunables=Tunables(**spec['tunables']))
        model.load_state_dict(spec['state_dict'])
        model.eval()
        return model

    def load_checkpoint(self, local_filename):
        spec = torch.load(local_filename, map_location='cpu')
        assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
        state_dict = {k.replace('model.', ''):v
                      for k,v in spec['state_dict'].items()}
        self.load_state_dict(state_dict)
        return self

    def save_model(self, fname):
        torch.save(dict(config = self.__stored_args__,
                        tunables = dataclasses.asdict(self.tunables),
                        state_dict = self.state_dict()), fname)

    def ensure_tokenizer(self):
        assert not self.training
        if self.tokenizer is None: self.tokenizer = CharTokenizer()

    def switch_dtypes(self, dtype=torch.float16):
        self.dtype = dtype
        for n,m in self.named_modules():
            # convert every leaf layer apart from the LayerNorms
            if isinstance(m, (nn.Linear, nn.Embedding)):
                m.to(dtype)
            # take care of buffers ([kv]_cache, masks) that are not in the leaf layers
            for bn,b in m.named_buffers(recurse=False):
                setattr(m,bn,b.to(dtype))

    def optimize(self, max_batch_size=1, dtype=torch.float16, torch_compile=True):
        for emb in [self.embeddings.embedding, self.embeddings.embedding]:
            emb.convert_for_eval()
        for l in self.encoder.layers:
            l.attn.convert_for_eval()
        for l in self.decoder.layers:
            l.attn.convert_for_eval()
            l.cross_attn.convert_for_eval()
            l.setup_kv_cache(max_batch_size, self.stoks_len, self.ttoks_len)
        self.switch_dtypes(dtype)
        if torch_compile:
            self.generate_next = torch.compile(self.generate_next, mode="reduce-overhead", fullgraph=True)

    @property
    def device(self):
        return next(self.parameters()).device
        
    # from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
    def multinomial_sample_one_no_sync(self, probs_sort): # Does multinomial sampling without a cuda synchronization
        q = torch.empty_like(probs_sort).exponential_(1)
        return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)

    def logits_to_probs(self, logits, T=1.0, top_k=None):
        logits = logits / max(T, 1e-5)

        logits[self.embeddings.embedding.codes:] = -torch.inf
        if top_k is not None:
            v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
            pivot = v.select(-1, -1).unsqueeze(-1)
            logits = torch.where(logits < pivot, -float("Inf"), logits)

        probs = torch.nn.functional.softmax(logits, dim=-1)
        return probs

    def sample(self, logits, T=1.0, top_k=None):
        probs = self.logits_to_probs(logits[0,-1], T, top_k)
        idx_next = self.multinomial_sample_one_no_sync(probs)
        return idx_next

    def generate_one(self, toks, toks_positions, cps_emb, xenc, xenc_positions, T, top_k):
        probs, _ = self(None, None, None, None, toks, toks_positions, loss=None, xenc=xenc, xenc_positions=xenc_positions, cps_emb=cps_emb)
        return self.sample(probs, T, top_k)

    def generate_next(self, *args, **kwargs):
        return self.generate_one(*args, **kwargs)

    @torch.no_grad()
    def prep(self, txt, cps=15, lang="en"):
        dev = self.device
        ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev)
        ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0)
        cpss = torch.tensor([cps], device=dev)
        langs = torch.tensor([languages.to_id(lang)], device=dev)
        return ttoks, cpss, langs
    
    @torch.no_grad()
    def generate(self, txt, cps=15, lang="en", N=None, T=0.7, top_k=None, step=None, show_progress_bar=True):
        self.ensure_tokenizer()
        N = N or self.stoks_len
        dev = self.device
        ttoks = []
        langs = []
        if isinstance(lang, list):
            lang0 = lang[0]
            assert isinstance(txt, list), "lang and txt have to be both lists or strings"
            for txt, lang in zip(txt, lang):
                tt = self.tokenizer.encode(txt)
                ttoks += tt
                langs += [languages.to_id(lang)] * len(tt)
        elif isinstance(lang, torch.Tensor):
            langs = lang
            ttoks = self.tokenizer.encode(txt)
        else:
            lang0 = lang
            ttoks = self.tokenizer.encode(txt)
            langs = torch.tensor([languages.to_id(lang)], device=dev).unsqueeze(0)
        ttoks = torch.tensor(ttoks, device=dev)
        ttoks = F.pad(ttoks, (1, self.ttoks_len - len(ttoks) - 1), value=self.tokenizer.eot).unsqueeze(0)
        cpss = torch.tensor([cps], device=dev)
        if not isinstance(langs, torch.Tensor):
            langs = torch.tensor(langs, device=dev)
            langs = F.pad(langs, (1, self.ttoks_len - len(langs) - 1), value=languages.to_id(lang0)).unsqueeze(0)
        it = range(0,N-1)
        if show_progress_bar: it = progress_bar(it)

        toks = torch.zeros((1,N), dtype=torch.long, device=dev)
        toks[:,0] = self.stoks_codes-1
        toks_positions = torch.arange(N, device=dev)
        with record_function("encode"):
            xenc, xenc_positions, cps_emb = self.run_encoder(ttoks, langs, cpss)
            toks_positions = torch.arange(N+1, device=dev)
        # contrary to S2A this model works without prefill and is actually a tiny bit faster
        # with record_function("prefill"):
        #     toks[0,1] = self.generate_one(toks[:,:1], toks_positions[:1], cps_emb, xenc, xenc_positions, T, top_k)
        with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
            for i in it:
                toks[0,i+1] = self.generate_next(toks[:,i:i+1], toks_positions[i:i+1], cps_emb, xenc, xenc_positions, T, top_k)
                if i % 25 == 0 and toks[0,i+1] == self.stoks_codes-1: return toks[0,:i+1]

                # for profiling, debugging or early exit
                if step is not None: step()
        return toks[0,:]
    
    @torch.no_grad()
    def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True):
        self.ensure_tokenizer()
        N = self.stoks_len
        dev = self.device
        ttoks = []
        for txt in txts:
            ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev)
            ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0)
            ttoks.append(ttoks_)
        ttoks = torch.cat(ttoks, dim=0)
        toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev)
        it = range(N)
        if show_progress_bar: it = progress_bar(it)
        for i in it:
            p, _ = self(ttoks, toks[:,:i], loss=None)
            last_p = p[:,-1]
            if top_k:
                last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
            tok = torch.multinomial((last_p / float(T)).softmax(-1), 1)
            toks[:,i] = tok[:,0]
            if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i]
        return toks

# %% ../nbs/5B. Multi-lang text to semantic token modeling.ipynb 18
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs):
    kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs)
    if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes
    if size == 'micro':
        return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs)
    if size == 'tiny':
        return TSARTransformer(depth=4, n_head=6, **kwargs)
    if size == 'base':
        return TSARTransformer(depth=6, n_head=8, **kwargs)
    if size == 'small':
        return TSARTransformer(depth=12, n_head=12, **kwargs)
    if size == 'small+':
        return TSARTransformer(depth=12, n_head=16, **kwargs)
    if size == 'medium':
        return TSARTransformer(depth=24, n_head=16, **kwargs)

def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
    from whisperspeech import vq_stoks

    if frozen_embeddings_model:
        vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
        model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
        model.load_frozen_semantic_embeddings(vqmodel)
    else:
        model = _make_model(size, tunables, dataset, mode=mode)
    return model