Spaces:
Paused
Paused
File size: 12,939 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/A. Neural modules.ipynb.
# %% auto 0
__all__ = ['LayerNorm', 'LinearHead', 'QueryHead', 'init_transformer', 'sinusoids', 'MultiHeadAttention',
'ResidualAttentionBlock', 'BaseDecoder', 'EmbeddingProjector', 'FlexEmbeddings']
# %% ../nbs/A. Neural modules.ipynb 2
import torch
import numpy as np
import math
from torch import Tensor, nn
import torch.nn.functional as F
from typing import Dict, Iterable, Optional
# import xformers.ops as xops
# %% ../nbs/A. Neural modules.ipynb 3
# Code in this file is mostly borrowed from
# https://github.com/openai/whisper/blob/main/whisper/model.py
# and is under the MIT License
class LayerNorm(nn.LayerNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
# Used in μP to initialize the weights and configure the optimizer
# These two layers map the transformer width into a fixed dimension
class LinearHead(nn.Linear):
pass
class QueryHead(nn.Linear):
pass
# based on https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L163
def init_transformer(m):
if isinstance(m, (nn.Linear, nn.Embedding)):
torch.nn.init.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1.0)
# %% ../nbs/A. Neural modules.ipynb 4
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
# %% ../nbs/A. Neural modules.ipynb 5
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int, qk_scale: float = 1, rope: bool = False, cross=False):
super().__init__()
self.n_state = n_state
self.n_head = n_head
self.sqrt_qk_scale = math.sqrt(qk_scale)
self.query = QueryHead(n_state, n_state)
self.key = nn.Linear(n_state, n_state, bias=False)
self.value = nn.Linear(n_state, n_state)
self.out = nn.Linear(n_state, n_state)
self.cross = cross
self.query_subsampling = 1
self.key_subsampling = 1
self.cached_kvx = None
self.register_buffer('k_cache', None)
self.register_buffer('v_cache', None)
self.rotary = None
if rope:
self.rotary = Rotary(n_state // n_head)
self.qkv = None
self.kv = None
def setup_kv_cache(self, max_batch_size, max_seq_len, dtype=torch.float32):
cache_shape = (max_batch_size, self.n_head, max_seq_len, self.n_state//self.n_head)
self.k_cache = torch.zeros(cache_shape, dtype=dtype, device=self.key.weight.device)
self.v_cache = torch.zeros(cache_shape, dtype=dtype, device=self.value.weight.device)
def merge_linears(self, layers, mults):
bias = [x.bias for x in layers if x.bias is not None][0]
din, dout = layers[0].weight.shape
new = nn.Linear(din, len(layers) * dout).to(layers[0].weight.device)
with torch.no_grad():
new.weight[:] = torch.cat([x.weight * m for x,m in zip(layers, mults)])
new.bias[:] = torch.cat([torch.zeros_like(bias) if x.bias is None else x.bias * m for x, m in zip(layers, mults)])
return new
def convert_for_eval(self):
if self.qkv or self.kv: raise AttributeError("already converted")
self.odim = self.key.weight.shape[1]
if self.cross:
self.q = self.merge_linears([self.query], [self.sqrt_qk_scale])
self.kv = self.merge_linears([self.key, self.value],
[self.sqrt_qk_scale, 1])
else:
self.qkv = self.merge_linears([self.query, self.key, self.value],
[self.sqrt_qk_scale, self.sqrt_qk_scale, 1])
def split_heads(self, x, x_positions, rope=False, subsampling=1):
x = x.view(*x.shape[:2], self.n_head, -1)
if rope:
x = rope_rotate(x, x_positions * subsampling, *self.rotary(x))
return x.permute(0, 2, 1, 3)
def forward(
self,
qx,
q_positions,
kvx,
kv_positions,
causal = False,
mask=None,
):
if self.qkv:
q,k,v = self.qkv(qx).split(self.odim, dim=-1)
elif self.kv:
q = self.q(qx)
k,v = self.kv(kvx).split(self.odim, dim=-1)
else:
q,k,v = None,None,None
if q is None: q = self.query(qx) * self.sqrt_qk_scale
q = self.split_heads(q, q_positions, rope = self.rotary, subsampling = self.query_subsampling)
if kvx is not self.cached_kvx:
if k is None: k = self.key(kvx) * self.sqrt_qk_scale
k = self.split_heads(k, kv_positions, rope = self.rotary, subsampling = self.key_subsampling)
if v is None: v = self.value(kvx)
v = self.split_heads(v, kv_positions)
if self.k_cache is not None:
self.k_cache[:,:,kv_positions] = k
self.v_cache[:,:,kv_positions] = v
if self.k_cache is not None:
k, v = self.k_cache, self.v_cache
if mask is not None:
mask = mask[q_positions]
wv = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0, is_causal=causal)
return self.out(wv.permute(0, 2, 1, 3).flatten(start_dim=2))
# %% ../nbs/A. Neural modules.ipynb 6
# modified from https://blog.eleuther.ai/rotary-embeddings/
import torch
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if not self.seq_len_cached or seq_len > self.seq_len_cached:
self.seq_len_cached = 2500
# self.seq_len_cached = seq_len
t = torch.arange(self.seq_len_cached, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, :, None, :]
self.sin_cached = emb.sin()[None, :, None, :]
return self.cos_cached, self.sin_cached
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat(
(-x2, x1), dim=len(x.shape)-1
)
def rope_rotate(x, positions, cos, sin):
return x * cos[:,positions] + rotate_half(x) * sin[:,positions]
# %% ../nbs/A. Neural modules.ipynb 7
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False, rope: bool = False,
qk_scale: float = 1, ffn_mult: int = 4):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head, qk_scale=qk_scale, rope=rope, cross=True) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * ffn_mult
self.mlp = nn.Sequential(
nn.Linear(n_state, n_mlp), nn.GELU(), nn.Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def setup_kv_cache(self, max_batch_size, max_seq_len, max_cross_seq_len=None):
self.attn.setup_kv_cache(max_batch_size, max_seq_len)
if self.cross_attn:
self.cross_attn.setup_kv_cache(max_batch_size, max_cross_seq_len)
def forward(
self,
x: Tensor,
x_positions: Tensor = None,
xa: Optional[Tensor] = None,
xa_positions: Optional[Tensor] = None,
causal = False,
mask=None,
):
lnx = self.attn_ln(x)
x = x + self.attn(lnx, x_positions, lnx, x_positions, causal=causal, mask=mask)
if self.cross_attn:
lnx = self.cross_attn_ln(x)
x = x + self.cross_attn(lnx, x_positions, xa, xa_positions)
x = x + self.mlp(self.mlp_ln(x))
return x
# %% ../nbs/A. Neural modules.ipynb 8
class BaseDecoder(nn.Module):
def __init__(self, depth=6, n_head=6, width=384, qk_scale=1, ffn_mult=4, length=2250, rope=False):
super().__init__()
self.length = length
self.width = width
self.layers = nn.ModuleList([
ResidualAttentionBlock(
self.width, n_head, qk_scale=qk_scale, ffn_mult=ffn_mult, cross_attention=True, rope=rope
) for _ in range(math.floor(depth))
])
self.ln_post = LayerNorm(width)
mask = torch.empty(length, length).fill_(-torch.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x, x_positions, xenc, xenc_positions):
for i,l in enumerate(self.layers):
x = l(x, x_positions, xenc, xenc_positions, causal=False, mask=self.mask)
x = self.ln_post(x)
return x
# %% ../nbs/A. Neural modules.ipynb 9
class EmbeddingProjector(nn.Linear):
pass
class FlexEmbeddings(nn.Module):
def __init__(self, codes, width, special_codes=None, frozen_width=None, special_embedding=None, unembed=True):
super().__init__()
self.codes = codes
self.special_codes = special_codes
if frozen_width is None: frozen_width = width
self.main = nn.Embedding(codes, frozen_width or width)
self.emb_to_hidden = EmbeddingProjector(frozen_width, width) if frozen_width != width else None
self.hidden_to_emb = EmbeddingProjector(width, frozen_width) if unembed and frozen_width != width else None
if special_codes:
self.special = special_embedding or nn.Embedding(special_codes, width)
self.register_buffer('merged_in', None)
self.register_buffer('merged_out', None)
self.register_buffer('bias_out', None)
def set_frozen_embeddings(self, values):
with torch.no_grad():
self.main.weight[:] = values
self.main.lr_scale = 0
@torch.no_grad()
def convert_for_eval(self):
if not self.special_codes: return
# in
main_w = self.main.weight
if self.emb_to_hidden is not None: main_w = self.emb_to_hidden(main_w)
weight = torch.cat([main_w, self.special.weight], dim=0)
self.merged_in = nn.Embedding(*weight.shape, _weight=weight)
# out
weight = self.main.weight
if self.hidden_to_emb: weight = weight @ self.hidden_to_emb.weight
self.merged_out = torch.cat([weight.T, self.special.weight.T], dim=1).T.contiguous() # T is for F.linear
if self.hidden_to_emb:
self.bias_out = torch.cat([
self.hidden_to_emb.bias @ self.main.weight.T,
torch.zeros(self.special.weight.shape[0], device=weight.device, dtype=weight.dtype)
], dim=0)
else:
self.bias_out = None
def forward(self, toks):
if not self.training and self.merged_in is not None:
return self.merged_in(toks)
if self.special_codes:
special_mask = toks >= self.codes
embs = self.main(torch.where(special_mask, 0, toks))
else:
embs = self.main(toks)
if self.emb_to_hidden: embs = self.emb_to_hidden(embs)
if self.special_codes:
embs[special_mask] = self.special(toks[special_mask] - self.codes).to(embs.dtype)
return embs
def unembed(self, embs):
if not self.training and self.merged_out is not None:
return F.linear(embs, self.merged_out, self.bias_out) # embs @ self.merged_out + self.bias_out
orig_embs = embs
if self.hidden_to_emb: embs = self.hidden_to_emb(embs)
main_logits = (embs @ self.main.weight.to(embs.dtype).T).float()
if not self.special_codes:
return main_logits
special_logits = (orig_embs @ self.special.weight.to(orig_embs.dtype).T).float()
return torch.cat([main_logits, special_logits], dim=-1)
|