Spaces:
Paused
Paused
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Text to semantic token modeling.ipynb. | |
# %% auto 0 | |
__all__ = ['load_datasets', 'rand', 'Tunables', 'Encoder', 'Decoder', 'TSARTransformer', 'make_model'] | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 1 | |
import dataclasses | |
import random | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.profiler import record_function | |
from huggingface_hub import hf_hub_download | |
from fastcore.basics import store_attr | |
from fastprogress import progress_bar | |
import webdataset as wds | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 2 | |
from pathlib import Path | |
import pylab as plt | |
import pandas as pd | |
import numpy as np | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 3 | |
import whisper | |
from whisperspeech.train import * | |
from whisperspeech.modules import * | |
from whisperspeech import vq_stoks | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 8 | |
import re | |
class CharTokenizer: | |
"""Trivial tokenizer – just use UTF-8 bytes""" | |
eot = 0 | |
def encode(self, txt): | |
return list(bytes(txt.strip(), 'utf-8')) | |
def decode(self, tokens): | |
return bytes(tokens).decode('utf-8') | |
def tokenizer(ikey, okey, length): | |
"""Tokenizes a transcript""" | |
tok = CharTokenizer() | |
def _tokenizer(samples): | |
for s in samples: | |
toks = torch.tensor(tok.encode(s[ikey])) | |
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot) | |
yield s | |
return _tokenizer | |
def ar_padder(ikey, okey, length, pad_token): | |
"""Pads the tokens for autoregresive training""" | |
def _ar_padder(samples): | |
for s in samples: | |
toks = s[ikey] | |
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks) | |
toks = toks.to(torch.long) | |
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token) | |
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token) | |
yield s | |
return _ar_padder | |
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25): | |
"""Adds the characters per second metric to the input data""" | |
def _char_per_seconder(samples): | |
for s in samples: | |
secs = s[stoks_key].shape[-1] / stoks_per_second | |
s[cps_key] = len(s[txt_key]) / secs | |
yield s | |
return _char_per_seconder | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 9 | |
def build_speaker_map(shards): | |
speakers = set() | |
for shard in shards: | |
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines())) | |
return {id:i for i,id in enumerate(speakers)} | |
def speaker_id_extractor(speaker_map): | |
def _extractor(samples): | |
for s in samples: | |
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]]) | |
yield s | |
return _extractor | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 10 | |
def load_datasets( | |
input:str, # webdataset folder or shard list | |
samples:int, # samples per epoch | |
subsample:float=1, # use a fraction of the files | |
val_samples:int=512, | |
vq_codes:int=4096, | |
): | |
if isinstance(input, (Path, str)): | |
path = Path(input) | |
if path.is_dir(): | |
glob = '*-t2s-*.tar.gz' | |
else: | |
glob = path.name | |
path = path.parent | |
input = Path(path).glob(glob) | |
elif isinstance(input, list): | |
pass | |
else: | |
raise ArgumentError("input should be either a list of a path with an optional glob specifier") | |
shards = [str(x) for x in input] | |
speaker_map = build_speaker_map(shards) | |
def ds(shards, length): | |
ds = wds.WebDataset(wds.ResampledShards(shards)).compose( | |
wds.decode(), | |
speaker_id_extractor(speaker_map), | |
wds.select(lambda s: s['stoks.npy'].shape[-1] > 12), # select samples > .5s | |
tokenizer('txt', 'ttoks', length=550), | |
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1), | |
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25), | |
wds.to_tuple('ttoks', 'speaker', 'cps', 'in_stoks', 'out_stoks'), | |
wds.batched(64) | |
) | |
ds.speakers = speaker_map | |
ds.total_samples = length | |
ds.stoks_len = 750 | |
ds.stoks_codes = vq_codes | |
ds.ttoks_len = 550 | |
return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64) | |
return ( | |
ds(shards[1:], samples), | |
ds(shards[:1], val_samples), | |
) | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 14 | |
def rand(start, end): | |
return random.random() * (end - start) + start | |
class Tunables: | |
init_std :float = 1 | |
embeddings_std :float = .01 | |
embeddings_lr_scale: float = 5 | |
embedding_projector_lr_scale: float = 2.5 | |
output_mult :float = .35 | |
query_mult :float = 1 | |
encoder_depth_ratio :float = 0.25 | |
eot_dropout_p :float = .5 | |
cps_input: bool = True | |
cps_bins: int = 32 | |
lr0 :float = 1.5e-3 | |
clip_gradient_norm :float = .2 | |
weight_decay :float = 1e-1 | |
warmup_steps :float = 4000 | |
random :bool = False | |
def __post_init__(self): | |
# randomize the hyperparams if requested | |
if self.random: | |
self.init_std = 10**rand(-1,1) | |
self.embeddings_std = 10**rand(-3,-.7) | |
self.embeddings_lr_scale = rand(2,6) | |
self.output_mult = rand(0.25,0.65) | |
self.query_mult = 2**rand(-2,3) | |
self.encoder_depth_ratio = 0.25 | |
self.lr0 = rand(1,5)*1e-3 | |
self.clip_gradient_norm = 10**rand(-3,0) | |
self.warmup_steps = 100*(10**rand(1,1.85)) | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 15 | |
class EmbeddingProjector(nn.Linear): | |
pass | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 16 | |
class Encoder(nn.Module): | |
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()): | |
super().__init__() | |
self.emb_width = emb_width | |
self.emb_factor = width != emb_width | |
self.embedding = nn.Embedding(codes, emb_width) | |
if self.emb_factor: | |
self.emb_to_hidden = EmbeddingProjector(emb_width, width) | |
if pos_embs is None: pos_embs = sinusoids(length, width) | |
self.register_buffer("positional_embedding", pos_embs) | |
self.layers = nn.Sequential(*[ | |
ResidualAttentionBlock(width, n_head, | |
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) | |
]) | |
self.ln_post = LayerNorm(width) | |
def forward(self, Stoks): | |
xin = self.embedding(Stoks) | |
if self.emb_factor: | |
xin = self.emb_to_hidden(xin) | |
assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape" | |
xin = (xin + self.positional_embedding).to(xin.dtype) | |
return self.ln_post(self.layers(xin)) | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 17 | |
class Decoder(nn.Module): | |
def __init__(self, depth=6, stoks_width=384, width=384, n_head=6, length=1500, codes=1024, ffn_mult=4, pos_embs=None, tunables=Tunables()): | |
super().__init__() | |
self.length = length | |
self.codes = codes | |
self.width = width | |
self.stoks_width = stoks_width | |
self.emb_factor = width != stoks_width | |
# embed semantic tokens | |
self.embedding = nn.Embedding(codes, stoks_width) | |
if self.emb_factor: | |
self.emb_to_hidden = EmbeddingProjector(stoks_width, width) | |
self.hidden_to_emb = EmbeddingProjector(width, stoks_width) | |
if pos_embs is None: pos_embs = sinusoids(length, width) | |
self.register_buffer("positional_embedding", pos_embs) | |
self.layers = nn.ModuleList([ | |
ResidualAttentionBlock(width, n_head, cross_attention=True, | |
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth) | |
]) | |
self.ln_post = LayerNorm(width) | |
def forward(self, Stoks, xenc, cps=None): | |
Sembs = self.embedding(Stoks) | |
if self.emb_factor: | |
Sembs = self.emb_to_hidden(Sembs) | |
xin = (Sembs + self.positional_embedding[:Sembs.shape[1]]).to(xenc.dtype) | |
if cps is not None: xin = xin + cps | |
x = xin | |
for l in self.layers: x = l(x, xenc, causal=True) | |
x = self.ln_post(x) | |
if self.emb_factor: | |
x = self.hidden_to_emb(x) | |
logits = (x @ self.embedding.weight.to(x.dtype).T).float() | |
return logits | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 18 | |
class TSARTransformer(nn.Module): | |
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4, language='en', | |
ttoks_len=200, ttoks_codes=50364, ttoks_width=None, | |
stoks_len=1500, stoks_codes=1024, stoks_width=None, | |
tunables=Tunables()): | |
assert language == 'en', "only english is supported right now" | |
super().__init__() | |
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes,language") | |
width = n_head * head_width | |
self.width = width | |
self.base_width = 3 * head_width | |
self.tunables = tunables | |
if self.stoks_width is None: self.stoks_width = self.width | |
if self.ttoks_width is None: self.ttoks_width = self.width | |
if tunables.cps_input: | |
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width) | |
else: | |
self.cps_embeddings = None | |
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio) | |
decoder_depth = depth * 2 - encoder_depth | |
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables) | |
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args) | |
self.decoder = Decoder(length=stoks_len, codes=stoks_codes, stoks_width=self.stoks_width, depth=decoder_depth, **tformer_args) | |
self.tokenizer = None | |
self.apply(self.init_transformer) | |
def load_frozen_semantic_embeddings(self, vqmodel): | |
with torch.no_grad(): | |
self.decoder.embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0] | |
self.decoder.embedding.lr_scale = 0 | |
def setup(self, device): | |
pass | |
def init_transformer(self, m): | |
if isinstance(m, LinearHead): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, QueryHead): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
torch.nn.init.constant_(m.weight, 0) | |
elif isinstance(m, nn.Embedding): | |
m.no_weight_decay = True | |
m.lr_scale = self.tunables.embeddings_lr_scale | |
std = self.tunables.embeddings_std | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, EmbeddingProjector): | |
m.lr_scale = self.tunables.embedding_projector_lr_scale | |
std = self.tunables.init_std | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.Linear): | |
m.lr_scale = 1/(m.weight.shape[1] / self.base_width) | |
std = self.tunables.init_std / m.weight.shape[1] | |
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std) | |
if m.bias is not None: | |
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std) | |
elif isinstance(m, nn.LayerNorm): | |
m.no_weight_decay = True | |
torch.nn.init.constant_(m.bias, 0) | |
torch.nn.init.constant_(m.weight, 1) | |
def forward(self, Ttoks, speakers, cpss, in_stoks, out_stoks=None, loss=True): | |
with record_function("encoder"): | |
xenc = self.encoder(Ttoks.to(torch.long)) | |
with record_function("decoder"): | |
if self.cps_embeddings: | |
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long) | |
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1 | |
cps_embs = self.cps_embeddings(cps_bin).unsqueeze(1) | |
else: | |
cps_embs = None | |
logits = self.decoder(in_stoks, xenc, cps=cps_embs) * self.tunables.output_mult / (self.width / self.base_width) | |
if loss is not None: | |
with record_function("loss"): | |
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)#, reduction='none') | |
return logits, loss | |
# | |
# inference | |
# | |
def load_model(cls, repo_id="collabora/whisperspeech", filename="t2s_up_wds.model", local_filename=None): | |
if not local_filename: | |
local_filename = hf_hub_download(repo_id=repo_id, filename=filename) | |
spec = torch.load(local_filename) | |
model = cls(**spec['config'], tunables=Tunables(**spec['tunables'])) | |
model.load_state_dict(spec['state_dict']) | |
model.eval() | |
return model | |
def load_checkpoint(self, local_filename): | |
spec = torch.load(local_filename, map_location='cpu') | |
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint' | |
state_dict = {k.replace('model.', ''):v | |
for k,v in spec['state_dict'].items()} | |
self.load_state_dict(state_dict) | |
return self | |
def save_model(self, fname): | |
torch.save(dict(config = self.__stored_args__, | |
tunables = dataclasses.asdict(self.tunables), | |
state_dict = self.state_dict()), fname) | |
def ensure_tokenizer(self): | |
assert not self.training | |
if self.tokenizer is None: self.tokenizer = CharTokenizer() | |
#whisper.tokenizer.get_tokenizer(multilingual=True) | |
def device(self): | |
return next(self.parameters()).device | |
def generate(self, txt, cps=15, N=None, T=0.7, top_k=None, show_progress_bar=True): | |
self.ensure_tokenizer() | |
N = N or self.stoks_len | |
dev = self.device | |
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev) | |
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0) | |
cpss = torch.tensor([cps], device=dev) | |
toks = torch.zeros((1,N), dtype=torch.long, device=dev) | |
toks[0,0] = self.stoks_codes-1 | |
it = range(1,N) | |
if show_progress_bar: it = progress_bar(it) | |
for i in it: | |
p, _ = self(ttoks, None, cpss, toks[:,:i], loss=None) | |
last_p = p[0,-1] | |
if top_k: | |
last_p[last_p < torch.topk(last_p, top_k).values[-1,None]] = -torch.inf | |
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) | |
toks[0,i] = tok | |
if toks[0,i] == self.stoks_codes-1: return toks[0,1:i] | |
return toks[0,1:] | |
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True): | |
self.ensure_tokenizer() | |
N = self.stoks_len | |
dev = self.device | |
ttoks = [] | |
for txt in txts: | |
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev) | |
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0) | |
ttoks.append(ttoks_) | |
ttoks = torch.cat(ttoks, dim=0) | |
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev) | |
it = range(N) | |
if show_progress_bar: it = progress_bar(it) | |
for i in it: | |
p, _ = self(ttoks, toks[:,:i], loss=None) | |
last_p = p[:,-1] | |
if top_k: | |
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf | |
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1) | |
toks[:,i] = tok[:,0] | |
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i] | |
return toks | |
# %% ../nbs/5B. Text to semantic token modeling.ipynb 19 | |
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs): | |
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs) | |
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes | |
if size == 'micro': | |
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs) | |
if size == 'tiny': | |
return TSARTransformer(depth=4, n_head=6, **kwargs) | |
if size == 'base': | |
return TSARTransformer(depth=6, n_head=8, **kwargs) | |
if size == 'small': | |
return TSARTransformer(depth=12, n_head=16, **kwargs) | |
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None): | |
if frozen_embeddings_model: | |
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model) | |
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1]) | |
model.load_frozen_semantic_embeddings(vqmodel) | |
else: | |
model = _make_model(size, quantizers, tunables, dataset) | |
return model | |