laion-whisper / whisperspeech /t2s_up_wds.py
tonic
Laion WhisperSpeech Demo
33d9042
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/5B. Text to semantic token modeling.ipynb.
# %% auto 0
__all__ = ['load_datasets', 'rand', 'Tunables', 'Encoder', 'Decoder', 'TSARTransformer', 'make_model']
# %% ../nbs/5B. Text to semantic token modeling.ipynb 1
import dataclasses
import random
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.profiler import record_function
from huggingface_hub import hf_hub_download
from fastcore.basics import store_attr
from fastprogress import progress_bar
import webdataset as wds
# %% ../nbs/5B. Text to semantic token modeling.ipynb 2
from pathlib import Path
import pylab as plt
import pandas as pd
import numpy as np
# %% ../nbs/5B. Text to semantic token modeling.ipynb 3
import whisper
from whisperspeech.train import *
from whisperspeech.modules import *
from whisperspeech import vq_stoks
# %% ../nbs/5B. Text to semantic token modeling.ipynb 8
import re
class CharTokenizer:
"""Trivial tokenizer – just use UTF-8 bytes"""
eot = 0
def encode(self, txt):
return list(bytes(txt.strip(), 'utf-8'))
def decode(self, tokens):
return bytes(tokens).decode('utf-8')
def tokenizer(ikey, okey, length):
"""Tokenizes a transcript"""
tok = CharTokenizer()
def _tokenizer(samples):
for s in samples:
toks = torch.tensor(tok.encode(s[ikey]))
s[okey] = F.pad(toks, (0, length - toks.shape[-1]), value=tok.eot)
yield s
return _tokenizer
def ar_padder(ikey, okey, length, pad_token):
"""Pads the tokens for autoregresive training"""
def _ar_padder(samples):
for s in samples:
toks = s[ikey]
if isinstance(toks, (list, np.ndarray)): toks = torch.tensor(toks)
toks = toks.to(torch.long)
s['in_' +okey] = F.pad(toks, (1, length - toks.shape[-1] - 1), value=pad_token)
s['out_'+okey] = F.pad(toks, (0, length - toks.shape[-1]), value=pad_token)
yield s
return _ar_padder
def char_per_seconder(txt_key, stoks_key, cps_key, stoks_per_second=25):
"""Adds the characters per second metric to the input data"""
def _char_per_seconder(samples):
for s in samples:
secs = s[stoks_key].shape[-1] / stoks_per_second
s[cps_key] = len(s[txt_key]) / secs
yield s
return _char_per_seconder
# %% ../nbs/5B. Text to semantic token modeling.ipynb 9
def build_speaker_map(shards):
speakers = set()
for shard in shards:
with open(shard+'.speakers.txt') as f: speakers = speakers.union(set(x.strip() for x in f.readlines()))
return {id:i for i,id in enumerate(speakers)}
def speaker_id_extractor(speaker_map):
def _extractor(samples):
for s in samples:
s['speaker'] = torch.tensor(speaker_map[s['__key__'].split("/")[1]])
yield s
return _extractor
# %% ../nbs/5B. Text to semantic token modeling.ipynb 10
def load_datasets(
input:str, # webdataset folder or shard list
samples:int, # samples per epoch
subsample:float=1, # use a fraction of the files
val_samples:int=512,
vq_codes:int=4096,
):
if isinstance(input, (Path, str)):
path = Path(input)
if path.is_dir():
glob = '*-t2s-*.tar.gz'
else:
glob = path.name
path = path.parent
input = Path(path).glob(glob)
elif isinstance(input, list):
pass
else:
raise ArgumentError("input should be either a list of a path with an optional glob specifier")
shards = [str(x) for x in input]
speaker_map = build_speaker_map(shards)
def ds(shards, length):
ds = wds.WebDataset(wds.ResampledShards(shards)).compose(
wds.decode(),
speaker_id_extractor(speaker_map),
wds.select(lambda s: s['stoks.npy'].shape[-1] > 12), # select samples > .5s
tokenizer('txt', 'ttoks', length=550),
ar_padder('stoks.npy', 'stoks', length=750, pad_token=vq_codes-1),
char_per_seconder('txt', 'stoks.npy', 'cps', stoks_per_second=25),
wds.to_tuple('ttoks', 'speaker', 'cps', 'in_stoks', 'out_stoks'),
wds.batched(64)
)
ds.speakers = speaker_map
ds.total_samples = length
ds.stoks_len = 750
ds.stoks_codes = vq_codes
ds.ttoks_len = 550
return ds.compose(wds.slice(length // 64)).with_epoch(length // 64).with_length(length // 64)
return (
ds(shards[1:], samples),
ds(shards[:1], val_samples),
)
# %% ../nbs/5B. Text to semantic token modeling.ipynb 14
def rand(start, end):
return random.random() * (end - start) + start
@dataclasses.dataclass
class Tunables:
init_std :float = 1
embeddings_std :float = .01
embeddings_lr_scale: float = 5
embedding_projector_lr_scale: float = 2.5
output_mult :float = .35
query_mult :float = 1
encoder_depth_ratio :float = 0.25
eot_dropout_p :float = .5
cps_input: bool = True
cps_bins: int = 32
lr0 :float = 1.5e-3
clip_gradient_norm :float = .2
weight_decay :float = 1e-1
warmup_steps :float = 4000
random :bool = False
def __post_init__(self):
# randomize the hyperparams if requested
if self.random:
self.init_std = 10**rand(-1,1)
self.embeddings_std = 10**rand(-3,-.7)
self.embeddings_lr_scale = rand(2,6)
self.output_mult = rand(0.25,0.65)
self.query_mult = 2**rand(-2,3)
self.encoder_depth_ratio = 0.25
self.lr0 = rand(1,5)*1e-3
self.clip_gradient_norm = 10**rand(-3,0)
self.warmup_steps = 100*(10**rand(1,1.85))
# %% ../nbs/5B. Text to semantic token modeling.ipynb 15
class EmbeddingProjector(nn.Linear):
pass
# %% ../nbs/5B. Text to semantic token modeling.ipynb 16
class Encoder(nn.Module):
def __init__(self, depth=6, width=384, n_head=6, length=1500, codes=1024, emb_width=384, ffn_mult=4, pos_embs=None, tunables=Tunables()):
super().__init__()
self.emb_width = emb_width
self.emb_factor = width != emb_width
self.embedding = nn.Embedding(codes, emb_width)
if self.emb_factor:
self.emb_to_hidden = EmbeddingProjector(emb_width, width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.Sequential(*[
ResidualAttentionBlock(width, n_head,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth)
])
self.ln_post = LayerNorm(width)
def forward(self, Stoks):
xin = self.embedding(Stoks)
if self.emb_factor:
xin = self.emb_to_hidden(xin)
assert xin.shape[1:] == self.positional_embedding.shape, "incorrect semantic token shape"
xin = (xin + self.positional_embedding).to(xin.dtype)
return self.ln_post(self.layers(xin))
# %% ../nbs/5B. Text to semantic token modeling.ipynb 17
class Decoder(nn.Module):
def __init__(self, depth=6, stoks_width=384, width=384, n_head=6, length=1500, codes=1024, ffn_mult=4, pos_embs=None, tunables=Tunables()):
super().__init__()
self.length = length
self.codes = codes
self.width = width
self.stoks_width = stoks_width
self.emb_factor = width != stoks_width
# embed semantic tokens
self.embedding = nn.Embedding(codes, stoks_width)
if self.emb_factor:
self.emb_to_hidden = EmbeddingProjector(stoks_width, width)
self.hidden_to_emb = EmbeddingProjector(width, stoks_width)
if pos_embs is None: pos_embs = sinusoids(length, width)
self.register_buffer("positional_embedding", pos_embs)
self.layers = nn.ModuleList([
ResidualAttentionBlock(width, n_head, cross_attention=True,
qk_scale=tunables.query_mult*8/math.sqrt(width/n_head), ffn_mult=ffn_mult) for _ in range(depth)
])
self.ln_post = LayerNorm(width)
def forward(self, Stoks, xenc, cps=None):
Sembs = self.embedding(Stoks)
if self.emb_factor:
Sembs = self.emb_to_hidden(Sembs)
xin = (Sembs + self.positional_embedding[:Sembs.shape[1]]).to(xenc.dtype)
if cps is not None: xin = xin + cps
x = xin
for l in self.layers: x = l(x, xenc, causal=True)
x = self.ln_post(x)
if self.emb_factor:
x = self.hidden_to_emb(x)
logits = (x @ self.embedding.weight.to(x.dtype).T).float()
return logits
# %% ../nbs/5B. Text to semantic token modeling.ipynb 18
class TSARTransformer(nn.Module):
def __init__(self, depth=6, n_head=6, head_width=64, ffn_mult=4, language='en',
ttoks_len=200, ttoks_codes=50364, ttoks_width=None,
stoks_len=1500, stoks_codes=1024, stoks_width=None,
tunables=Tunables()):
assert language == 'en', "only english is supported right now"
super().__init__()
store_attr("depth,n_head,head_width,ffn_mult,stoks_width,ttoks_width,ttoks_len,stoks_len,ttoks_codes,stoks_codes,language")
width = n_head * head_width
self.width = width
self.base_width = 3 * head_width
self.tunables = tunables
if self.stoks_width is None: self.stoks_width = self.width
if self.ttoks_width is None: self.ttoks_width = self.width
if tunables.cps_input:
self.cps_embeddings = nn.Embedding(tunables.cps_bins, self.width)
else:
self.cps_embeddings = None
encoder_depth = int(depth * 2 * tunables.encoder_depth_ratio)
decoder_depth = depth * 2 - encoder_depth
tformer_args = dict(width=width, n_head=n_head, ffn_mult=ffn_mult, tunables=tunables)
self.encoder = Encoder(length=ttoks_len, codes=ttoks_codes, emb_width=self.ttoks_width, depth=encoder_depth, **tformer_args)
self.decoder = Decoder(length=stoks_len, codes=stoks_codes, stoks_width=self.stoks_width, depth=decoder_depth, **tformer_args)
self.tokenizer = None
self.apply(self.init_transformer)
def load_frozen_semantic_embeddings(self, vqmodel):
with torch.no_grad():
self.decoder.embedding.weight[:] = vqmodel.rq.layers[0]._codebook.embed[0]
self.decoder.embedding.lr_scale = 0
def setup(self, device):
pass
def init_transformer(self, m):
if isinstance(m, LinearHead):
m.no_weight_decay = True
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, QueryHead):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
torch.nn.init.constant_(m.weight, 0)
elif isinstance(m, nn.Embedding):
m.no_weight_decay = True
m.lr_scale = self.tunables.embeddings_lr_scale
std = self.tunables.embeddings_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, EmbeddingProjector):
m.lr_scale = self.tunables.embedding_projector_lr_scale
std = self.tunables.init_std
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.Linear):
m.lr_scale = 1/(m.weight.shape[1] / self.base_width)
std = self.tunables.init_std / m.weight.shape[1]
torch.nn.init.trunc_normal_(m.weight, std=std, a=-3*std, b=3*std)
if m.bias is not None:
torch.nn.init.trunc_normal_(m.bias, std=std, a=-3*std, b=3*std)
elif isinstance(m, nn.LayerNorm):
m.no_weight_decay = True
torch.nn.init.constant_(m.bias, 0)
torch.nn.init.constant_(m.weight, 1)
def forward(self, Ttoks, speakers, cpss, in_stoks, out_stoks=None, loss=True):
with record_function("encoder"):
xenc = self.encoder(Ttoks.to(torch.long))
with record_function("decoder"):
if self.cps_embeddings:
cps_bin = (cpss / 20 * self.tunables.cps_bins).to(torch.long)
cps_bin[cps_bin >= self.tunables.cps_bins] = self.tunables.cps_bins-1
cps_embs = self.cps_embeddings(cps_bin).unsqueeze(1)
else:
cps_embs = None
logits = self.decoder(in_stoks, xenc, cps=cps_embs) * self.tunables.output_mult / (self.width / self.base_width)
if loss is not None:
with record_function("loss"):
loss = F.cross_entropy(logits.transpose(-1,-2), out_stoks)#, reduction='none')
return logits, loss
#
# inference
#
@classmethod
def load_model(cls, repo_id="collabora/whisperspeech", filename="t2s_up_wds.model", local_filename=None):
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
spec = torch.load(local_filename)
model = cls(**spec['config'], tunables=Tunables(**spec['tunables']))
model.load_state_dict(spec['state_dict'])
model.eval()
return model
def load_checkpoint(self, local_filename):
spec = torch.load(local_filename, map_location='cpu')
assert 'pytorch-lightning_version' in spec, 'not a valid PyTorch Lightning checkpoint'
state_dict = {k.replace('model.', ''):v
for k,v in spec['state_dict'].items()}
self.load_state_dict(state_dict)
return self
def save_model(self, fname):
torch.save(dict(config = self.__stored_args__,
tunables = dataclasses.asdict(self.tunables),
state_dict = self.state_dict()), fname)
def ensure_tokenizer(self):
assert not self.training
if self.tokenizer is None: self.tokenizer = CharTokenizer()
#whisper.tokenizer.get_tokenizer(multilingual=True)
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def generate(self, txt, cps=15, N=None, T=0.7, top_k=None, show_progress_bar=True):
self.ensure_tokenizer()
N = N or self.stoks_len
dev = self.device
ttoks = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks = F.pad(ttoks, (0, self.ttoks_len - len(ttoks)), value=self.tokenizer.eot).unsqueeze(0)
cpss = torch.tensor([cps], device=dev)
toks = torch.zeros((1,N), dtype=torch.long, device=dev)
toks[0,0] = self.stoks_codes-1
it = range(1,N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p, _ = self(ttoks, None, cpss, toks[:,:i], loss=None)
last_p = p[0,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[-1,None]] = -torch.inf
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1)
toks[0,i] = tok
if toks[0,i] == self.stoks_codes-1: return toks[0,1:i]
return toks[0,1:]
@torch.no_grad()
def generate_batch(self, txts, N=None, T=1.1, top_k=7, show_progress_bar=True):
self.ensure_tokenizer()
N = self.stoks_len
dev = self.device
ttoks = []
for txt in txts:
ttoks_ = torch.tensor(self.tokenizer.encode(txt), device=dev)
ttoks_ = F.pad(ttoks_, (0, self.ttoks_len - len(ttoks_)), value=self.tokenizer.eot).unsqueeze(0)
ttoks.append(ttoks_)
ttoks = torch.cat(ttoks, dim=0)
toks = torch.zeros((len(ttoks),N), dtype=torch.long, device=dev)
it = range(N)
if show_progress_bar: it = progress_bar(it)
for i in it:
p, _ = self(ttoks, toks[:,:i], loss=None)
last_p = p[:,-1]
if top_k:
last_p[last_p < torch.topk(last_p, top_k).values[:,-1,None]] = -torch.inf
tok = torch.multinomial((last_p / float(T)).softmax(-1), 1)
toks[:,i] = tok[:,0]
if (toks[:,i] == self.stoks_codes-1).all(): return toks[:,:i]
return toks
# %% ../nbs/5B. Text to semantic token modeling.ipynb 19
def _make_model(size:str, tunables:Tunables=Tunables(), dataset=None, **kwargs):
kwargs = dict(stoks_len = dataset.stoks_len, ttoks_len = dataset.ttoks_len, tunables=tunables, **kwargs)
if 'stoks_codes' not in kwargs: kwargs['stoks_codes'] = dataset.stoks_codes
if size == 'micro':
return TSARTransformer(depth=2, n_head=3, ffn_mult=1, **kwargs)
if size == 'tiny':
return TSARTransformer(depth=4, n_head=6, **kwargs)
if size == 'base':
return TSARTransformer(depth=6, n_head=8, **kwargs)
if size == 'small':
return TSARTransformer(depth=12, n_head=16, **kwargs)
def make_model(size:str, frozen_embeddings_model:str=None, tunables:Tunables=Tunables(), dataset:torch.utils.data.Dataset=None):
if frozen_embeddings_model:
vqmodel = vq_stoks.RQBottleneckTransformer.load_model(frozen_embeddings_model)
model = _make_model(size, tunables, dataset, stoks_codes=vqmodel.vq_codes+1, stoks_width=vqmodel.rq.layers[0]._codebook.embed[0].shape[-1])
model.load_frozen_semantic_embeddings(vqmodel)
else:
model = _make_model(size, quantizers, tunables, dataset)
return model