Spaces:
Runtime error
Runtime error
File size: 10,686 Bytes
c3e4c21 95abc0b 64cd544 95abc0b 64cd544 f43467c 3c15d19 64cd544 f43467c 64cd544 f43467c c3e4c21 f43467c 629886b 3c15d19 95abc0b c3e4c21 952523e f43467c 952523e f43467c 952523e f43467c c3e4c21 f43467c 952523e c3e4c21 f43467c c3e4c21 f43467c c3e4c21 f43467c c3e4c21 f43467c c3e4c21 f43467c 952523e 95abc0b f43467c 64cd544 95abc0b 90cd056 95abc0b c3e4c21 952523e c3e4c21 95abc0b 90cd056 95abc0b 3c15d19 64cd544 952523e 64cd544 3c15d19 64cd544 95abc0b 6d2b0a3 95abc0b 24052a1 95abc0b 64cd544 6d2b0a3 952523e 64cd544 5f7ffc5 3c15d19 5f7ffc5 3c15d19 5f7ffc5 3c15d19 64cd544 24052a1 64cd544 95abc0b 64cd544 95abc0b 6d2b0a3 5192410 6d2b0a3 1077963 5192410 1077963 5192410 95abc0b 64cd544 1077963 64cd544 952523e 95abc0b 3c15d19 1077963 6d2b0a3 1077963 64cd544 95abc0b 6d2b0a3 95abc0b 6532453 64cd544 95abc0b ae40287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import multiprocessing
import os
import random
import shutil
import tempfile
import zipfile
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import fitz # PyMuPDF
import gradio as gr
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from PIL import Image
from dataset_card_template import DATASET_CARD_TEMPLATE
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
CPU_COUNT = multiprocessing.cpu_count()
MAX_WORKERS = min(32, CPU_COUNT) # Use CPU count directly for processes
def process_pdf(pdf_file, sample_percentage, temp_dir):
try:
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
total_pages = len(doc)
pages_to_convert = int(total_pages * (sample_percentage / 100))
pages_to_convert = max(
1, min(pages_to_convert, total_pages)
) # Ensure at least one page and not more than total pages
selected_pages = (
sorted(random.sample(range(total_pages), pages_to_convert))
if 0 < sample_percentage < 100
else range(total_pages)
)
images = []
for page_num in selected_pages:
page = doc[page_num]
pix = page.get_pixmap() # Remove the Matrix scaling
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image_path = os.path.join(
temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num+1}.jpg"
)
image.save(image_path, "JPEG", quality=85, optimize=True)
images.append(image_path)
doc.close()
return images, None, len(images)
except Exception as e:
return [], f"Error processing {pdf_file.name}: {str(e)}", 0
def pdf_to_images(pdf_files, sample_percentage, temp_dir, progress=gr.Progress()):
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
progress(0, desc="Starting conversion")
all_images = []
skipped_pdfs = []
total_pages = sum(len(fitz.open(pdf.name)) for pdf in pdf_files)
processed_pages = 0
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
future_to_pdf = {
executor.submit(process_pdf, pdf, sample_percentage, temp_dir): pdf
for pdf in pdf_files
}
for future in as_completed(future_to_pdf):
pdf = future_to_pdf[future]
images, error, pages_processed = future.result()
if error:
skipped_pdfs.append(error)
gr.Info(error)
else:
all_images.extend(images)
processed_pages += pages_processed
progress((processed_pages / total_pages), desc=f"Processing {pdf.name}")
message = f"Saved {len(all_images)} images to temporary directory"
if skipped_pdfs:
message += f"\nSkipped {len(skipped_pdfs)} PDFs due to errors: {', '.join(skipped_pdfs)}"
return all_images, message
def get_size_category(num_images):
if num_images < 1000:
return "n<1K"
elif num_images < 10000:
return "1K<n<10K"
elif num_images < 100000:
return "10K<n<100K"
elif num_images < 1000000:
return "100K<n<1M"
else:
return "n>1M"
def process_pdfs(
pdf_files,
sample_percentage,
hf_repo,
create_zip,
private_repo,
oauth_token: gr.OAuthToken | None,
progress=gr.Progress(),
):
if not pdf_files:
return (
None,
None,
gr.Markdown(
"⚠️ No PDF files uploaded. Please upload at least one PDF file."
),
)
if oauth_token is None:
return (
None,
None,
gr.Markdown(
"⚠️ Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset."
),
)
try:
temp_dir = tempfile.mkdtemp()
images_dir = os.path.join(temp_dir, "images")
os.makedirs(images_dir)
progress(0, desc="Starting PDF processing")
images, message = pdf_to_images(pdf_files, sample_percentage, images_dir)
# Create a new directory for sampled images
sampled_images_dir = os.path.join(temp_dir, "sampled_images")
os.makedirs(sampled_images_dir)
# Move sampled images to the new directory and update paths
updated_images = []
for image in images:
new_path = os.path.join(sampled_images_dir, os.path.basename(image))
shutil.move(image, new_path)
updated_images.append(new_path)
# Update the images list with new paths
images = updated_images
zip_path = None
if create_zip:
# Create a zip file of the sampled images
zip_path = os.path.join(temp_dir, "converted_images.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
progress(0, desc="Zipping images")
for image in progress.tqdm(images, desc="Zipping images"):
zipf.write(
os.path.join(sampled_images_dir, os.path.basename(image)),
os.path.basename(image),
)
message += f"\nCreated zip file with {len(images)} images"
if hf_repo:
try:
hf_api = HfApi(token=oauth_token.token)
hf_api.create_repo(
hf_repo,
repo_type="dataset",
private=private_repo,
)
# Upload only the sampled images directory
hf_api.upload_folder(
folder_path=sampled_images_dir,
repo_id=hf_repo,
repo_type="dataset",
path_in_repo="images",
)
# Determine size category
size_category = get_size_category(len(images))
# Create DatasetCardData instance
card_data = DatasetCardData(
tags=["created-with-pdfs-to-page-images-converter", "pdf-to-image"],
size_categories=[size_category],
)
# Create and populate the dataset card
card = DatasetCard.from_template(
card_data,
template_path=None, # Use default template
hf_repo=hf_repo,
num_images=len(images),
num_pdfs=len(pdf_files),
sample_size=sample_percentage
if sample_percentage > 0
else "All pages",
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
)
# Add our custom content to the card
card.text = DATASET_CARD_TEMPLATE.format(
hf_repo=hf_repo,
num_images=len(images),
num_pdfs=len(pdf_files),
sample_size=sample_percentage
if sample_percentage > 0
else "All pages",
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
size_category=size_category,
)
repo_url = f"https://huggingface.co/datasets/{hf_repo}"
message += f"\nUploaded dataset card to Hugging Face repo: [{hf_repo}]({repo_url})"
card.push_to_hub(hf_repo, token=oauth_token.token)
except Exception as e:
message += f"\nFailed to upload to Hugging Face: {str(e)}"
return images, zip_path, message
except Exception as e:
if "temp_dir" in locals():
shutil.rmtree(temp_dir)
return None, None, f"An error occurred: {str(e)}"
# Define the Gradio interface
with gr.Blocks() as demo:
gr.HTML(
"""<h1 style='text-align: center;'> PDFs to Page Images Converter</h1>
<center><i> 📁 Convert PDFs to an image dataset, splitting pages into individual images 📁 </i></center>"""
)
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; max-width: 1000px; margin: 0 auto;">
<div style="flex: 1; padding-right: 20px;">
<p>This app allows you to:</p>
<ol>
<li>Upload one or more PDF files</li>
<li>Convert each page of the PDFs into separate image files</li>
<li>(Optionally) sample a specific number of pages from each PDF</li>
<li>(Optionally) Create a downloadable ZIP file of the converted images</li>
<li>(Optionally) Upload the images to a Hugging Face dataset repository</li>
</ol>
</div>
<div style="flex: 1;">
<img src="https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset/resolve/main/assets/PDF%20page%20split%20illustration.png"
alt="PDF page split illustration"
style="max-width: 50%; height: auto;">
</div>
</div>
"""
)
with gr.Row():
pdf_files = gr.File(
file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
)
with gr.Row():
sample_percentage = gr.Slider(
minimum=0,
maximum=100,
value=100,
step=1,
label="Percentage of pages to sample per PDF",
info="0% for no sampling (all pages), 100% for all pages",
)
create_zip = gr.Checkbox(label="Create ZIP file of images?", value=False)
with gr.Accordion("Hugging Face Upload Options", open=True):
gr.LoginButton(size="sm")
with gr.Row():
hf_repo = gr.Textbox(
label="Hugging Face Repo",
placeholder="username/repo-name",
info="Enter the Hugging Face repository name in the format 'username/repo-name'",
)
private_repo = gr.Checkbox(label="Make repository private?", value=False)
with gr.Accordion("View converted images", open=False):
output_gallery = gr.Gallery(label="Converted Images")
status_text = gr.Markdown(label="Status")
download_button = gr.File(label="Download Converted Images")
submit_button = gr.Button("Convert PDFs to page images")
submit_button.click(
process_pdfs,
inputs=[pdf_files, sample_percentage, hf_repo, create_zip, private_repo],
outputs=[output_gallery, download_button, status_text],
)
demo.launch()
|