import multiprocessing import os import random import shutil import tempfile import zipfile from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime import fitz # PyMuPDF import gradio as gr from huggingface_hub import DatasetCard, DatasetCardData, HfApi from PIL import Image from dataset_card_template import DATASET_CARD_TEMPLATE os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" CPU_COUNT = multiprocessing.cpu_count() MAX_WORKERS = min(32, CPU_COUNT) # Use CPU count directly for processes def process_pdf(pdf_file, sample_percentage, temp_dir): try: pdf_path = pdf_file.name doc = fitz.open(pdf_path) total_pages = len(doc) pages_to_convert = int(total_pages * (sample_percentage / 100)) pages_to_convert = max( 1, min(pages_to_convert, total_pages) ) # Ensure at least one page and not more than total pages selected_pages = ( sorted(random.sample(range(total_pages), pages_to_convert)) if 0 < sample_percentage < 100 else range(total_pages) ) images = [] for page_num in selected_pages: page = doc[page_num] pix = page.get_pixmap() # Remove the Matrix scaling image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) image_path = os.path.join( temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num+1}.jpg" ) image.save(image_path, "JPEG", quality=85, optimize=True) images.append(image_path) doc.close() return images, None, len(images) except Exception as e: return [], f"Error processing {pdf_file.name}: {str(e)}", 0 def pdf_to_images(pdf_files, sample_percentage, temp_dir, progress=gr.Progress()): if not os.path.exists(temp_dir): os.makedirs(temp_dir) progress(0, desc="Starting conversion") all_images = [] skipped_pdfs = [] total_pages = sum(len(fitz.open(pdf.name)) for pdf in pdf_files) processed_pages = 0 with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor: future_to_pdf = { executor.submit(process_pdf, pdf, sample_percentage, temp_dir): pdf for pdf in pdf_files } for future in as_completed(future_to_pdf): pdf = future_to_pdf[future] images, error, pages_processed = future.result() if error: skipped_pdfs.append(error) gr.Info(error) else: all_images.extend(images) processed_pages += pages_processed progress((processed_pages / total_pages), desc=f"Processing {pdf.name}") message = f"Saved {len(all_images)} images to temporary directory" if skipped_pdfs: message += f"\nSkipped {len(skipped_pdfs)} PDFs due to errors: {', '.join(skipped_pdfs)}" return all_images, message def get_size_category(num_images): if num_images < 1000: return "n<1K" elif num_images < 10000: return "1K1M" def process_pdfs( pdf_files, sample_percentage, hf_repo, create_zip, private_repo, oauth_token: gr.OAuthToken | None, progress=gr.Progress(), ): if not pdf_files: return ( None, None, gr.Markdown( "⚠️ No PDF files uploaded. Please upload at least one PDF file." ), ) if oauth_token is None: return ( None, None, gr.Markdown( "⚠️ Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset." ), ) try: temp_dir = tempfile.mkdtemp() images_dir = os.path.join(temp_dir, "images") os.makedirs(images_dir) progress(0, desc="Starting PDF processing") images, message = pdf_to_images(pdf_files, sample_percentage, images_dir) # Create a new directory for sampled images sampled_images_dir = os.path.join(temp_dir, "sampled_images") os.makedirs(sampled_images_dir) # Move sampled images to the new directory and update paths updated_images = [] for image in images: new_path = os.path.join(sampled_images_dir, os.path.basename(image)) shutil.move(image, new_path) updated_images.append(new_path) # Update the images list with new paths images = updated_images zip_path = None if create_zip: # Create a zip file of the sampled images zip_path = os.path.join(temp_dir, "converted_images.zip") with zipfile.ZipFile(zip_path, "w") as zipf: progress(0, desc="Zipping images") for image in progress.tqdm(images, desc="Zipping images"): zipf.write( os.path.join(sampled_images_dir, os.path.basename(image)), os.path.basename(image), ) message += f"\nCreated zip file with {len(images)} images" if hf_repo: try: hf_api = HfApi(token=oauth_token.token) hf_api.create_repo( hf_repo, repo_type="dataset", private=private_repo, ) # Upload only the sampled images directory hf_api.upload_folder( folder_path=sampled_images_dir, repo_id=hf_repo, repo_type="dataset", path_in_repo="images", ) # Determine size category size_category = get_size_category(len(images)) # Create DatasetCardData instance card_data = DatasetCardData( tags=["created-with-pdfs-to-page-images-converter", "pdf-to-image"], size_categories=[size_category], ) # Create and populate the dataset card card = DatasetCard.from_template( card_data, template_path=None, # Use default template hf_repo=hf_repo, num_images=len(images), num_pdfs=len(pdf_files), sample_size=sample_percentage if sample_percentage > 0 else "All pages", creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), ) # Add our custom content to the card card.text = DATASET_CARD_TEMPLATE.format( hf_repo=hf_repo, num_images=len(images), num_pdfs=len(pdf_files), sample_size=sample_percentage if sample_percentage > 0 else "All pages", creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), size_category=size_category, ) repo_url = f"https://huggingface.co/datasets/{hf_repo}" message += f"\nUploaded dataset card to Hugging Face repo: [{hf_repo}]({repo_url})" card.push_to_hub(hf_repo, token=oauth_token.token) except Exception as e: message += f"\nFailed to upload to Hugging Face: {str(e)}" return images, zip_path, message except Exception as e: if "temp_dir" in locals(): shutil.rmtree(temp_dir) return None, None, f"An error occurred: {str(e)}" # Define the Gradio interface with gr.Blocks() as demo: gr.HTML( """

PDFs to Page Images Converter

📁 Convert PDFs to an image dataset, splitting pages into individual images 📁
""" ) gr.HTML( """

This app allows you to:

  1. Upload one or more PDF files
  2. Convert each page of the PDFs into separate image files
  3. (Optionally) sample a specific number of pages from each PDF
  4. (Optionally) Create a downloadable ZIP file of the converted images
  5. (Optionally) Upload the images to a Hugging Face dataset repository
PDF page split illustration
""" ) with gr.Row(): pdf_files = gr.File( file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"] ) with gr.Row(): sample_percentage = gr.Slider( minimum=0, maximum=100, value=100, step=1, label="Percentage of pages to sample per PDF", info="0% for no sampling (all pages), 100% for all pages", ) create_zip = gr.Checkbox(label="Create ZIP file of images?", value=False) with gr.Accordion("Hugging Face Upload Options", open=True): gr.LoginButton(size="sm") with gr.Row(): hf_repo = gr.Textbox( label="Hugging Face Repo", placeholder="username/repo-name", info="Enter the Hugging Face repository name in the format 'username/repo-name'", ) private_repo = gr.Checkbox(label="Make repository private?", value=False) with gr.Accordion("View converted images", open=False): output_gallery = gr.Gallery(label="Converted Images") status_text = gr.Markdown(label="Status") download_button = gr.File(label="Download Converted Images") submit_button = gr.Button("Convert PDFs to page images") submit_button.click( process_pdfs, inputs=[pdf_files, sample_percentage, hf_repo, create_zip, private_repo], outputs=[output_gallery, download_button, status_text], ) # Launch the app demo.launch(debug=True)