Spaces:
Running
Running
File size: 4,285 Bytes
47c60f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from fastai.vision import *
from fastai.vision.learner import cnn_config
from .unet import DynamicUnetWide, DynamicUnetDeep
from .loss import FeatureLoss
from .dataset import *
# Weights are implicitly read from ./models/ folder
def gen_inference_wide(
root_folder: Path, weights_name: str, nf_factor: int = 2, arch=models.resnet101) -> Learner:
data = get_dummy_databunch()
learn = gen_learner_wide(
data=data, gen_loss=F.l1_loss, nf_factor=nf_factor, arch=arch
)
learn.path = root_folder
learn.load(weights_name)
learn.model.eval()
return learn
def gen_learner_wide(
data: ImageDataBunch, gen_loss, arch=models.resnet101, nf_factor: int = 2
) -> Learner:
return unet_learner_wide(
data,
arch=arch,
wd=1e-3,
blur=True,
norm_type=NormType.Spectral,
self_attention=True,
y_range=(-3.0, 3.0),
loss_func=gen_loss,
nf_factor=nf_factor,
)
# The code below is meant to be merged into fastaiv1 ideally
def unet_learner_wide(
data: DataBunch,
arch: Callable,
pretrained: bool = True,
blur_final: bool = True,
norm_type: Optional[NormType] = NormType,
split_on: Optional[SplitFuncOrIdxList] = None,
blur: bool = False,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
nf_factor: int = 1,
**kwargs: Any
) -> Learner:
"Build Unet learner from `data` and `arch`."
meta = cnn_config(arch)
body = create_body(arch, pretrained)
model = to_device(
DynamicUnetWide(
body,
n_classes=data.c,
blur=blur,
blur_final=blur_final,
self_attention=self_attention,
y_range=y_range,
norm_type=norm_type,
last_cross=last_cross,
bottle=bottle,
nf_factor=nf_factor,
),
data.device,
)
learn = Learner(data, model, **kwargs)
learn.split(ifnone(split_on, meta['split']))
if pretrained:
learn.freeze()
apply_init(model[2], nn.init.kaiming_normal_)
return learn
# ----------------------------------------------------------------------
# Weights are implicitly read from ./models/ folder
def gen_inference_deep(
root_folder: Path, weights_name: str, arch=models.resnet34, nf_factor: float = 1.5) -> Learner:
data = get_dummy_databunch()
learn = gen_learner_deep(
data=data, gen_loss=F.l1_loss, arch=arch, nf_factor=nf_factor
)
learn.path = root_folder
learn.load(weights_name)
learn.model.eval()
return learn
def gen_learner_deep(
data: ImageDataBunch, gen_loss, arch=models.resnet34, nf_factor: float = 1.5
) -> Learner:
return unet_learner_deep(
data,
arch,
wd=1e-3,
blur=True,
norm_type=NormType.Spectral,
self_attention=True,
y_range=(-3.0, 3.0),
loss_func=gen_loss,
nf_factor=nf_factor,
)
# The code below is meant to be merged into fastaiv1 ideally
def unet_learner_deep(
data: DataBunch,
arch: Callable,
pretrained: bool = True,
blur_final: bool = True,
norm_type: Optional[NormType] = NormType,
split_on: Optional[SplitFuncOrIdxList] = None,
blur: bool = False,
self_attention: bool = False,
y_range: Optional[Tuple[float, float]] = None,
last_cross: bool = True,
bottle: bool = False,
nf_factor: float = 1.5,
**kwargs: Any
) -> Learner:
"Build Unet learner from `data` and `arch`."
meta = cnn_config(arch)
body = create_body(arch, pretrained)
model = to_device(
DynamicUnetDeep(
body,
n_classes=data.c,
blur=blur,
blur_final=blur_final,
self_attention=self_attention,
y_range=y_range,
norm_type=norm_type,
last_cross=last_cross,
bottle=bottle,
nf_factor=nf_factor,
),
data.device,
)
learn = Learner(data, model, **kwargs)
learn.split(ifnone(split_on, meta['split']))
if pretrained:
learn.freeze()
apply_init(model[2], nn.init.kaiming_normal_)
return learn
# -----------------------------
|