Commit
·
3f49fe4
1
Parent(s):
03aebb5
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,21 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
|
8 |
-
#
|
9 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
|
10 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cuda", trust_remote_code=True).eval()
|
11 |
|
12 |
def generate_predictions(image_input, text_input):
|
13 |
-
#
|
14 |
user_image_path = "/tmp/user_input_test_image.jpg"
|
15 |
-
image_input.save(user_image_path)
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
query = tokenizer.from_list_format([
|
20 |
{'image': user_image_path},
|
21 |
{'text': text_input},
|
@@ -23,20 +24,45 @@ def generate_predictions(image_input, text_input):
|
|
23 |
inputs = tokenizer(query, return_tensors='pt')
|
24 |
inputs = inputs.to(model.device)
|
25 |
|
26 |
-
#
|
27 |
pred = model.generate(**inputs)
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
image_with_boxes = tokenizer.draw_bbox_on_latest_picture(
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
|
|
36 |
iface = gr.Interface(
|
37 |
fn=generate_predictions,
|
38 |
-
inputs=[
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
-
|
42 |
-
iface.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
import re # Importando o módulo de expressões regulares
|
6 |
import requests
|
7 |
from io import BytesIO
|
8 |
|
9 |
+
# Carregar o modelo Qwen-VL e o tokenizer
|
10 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
|
11 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cuda", trust_remote_code=True).eval()
|
12 |
|
13 |
def generate_predictions(image_input, text_input):
|
14 |
+
# Inverter a imagem para corrigir o negativo
|
15 |
user_image_path = "/tmp/user_input_test_image.jpg"
|
16 |
+
Image.fromarray((255 - (image_input * 255).astype('uint8'))).save(user_image_path)
|
17 |
+
|
18 |
+
|
19 |
+
# Preparar as entradas
|
20 |
query = tokenizer.from_list_format([
|
21 |
{'image': user_image_path},
|
22 |
{'text': text_input},
|
|
|
24 |
inputs = tokenizer(query, return_tensors='pt')
|
25 |
inputs = inputs.to(model.device)
|
26 |
|
27 |
+
# Gerar a legenda
|
28 |
pred = model.generate(**inputs)
|
29 |
+
full_response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
|
30 |
+
|
31 |
+
# Remover o texto de input e outras partes indesejadas da resposta completa
|
32 |
+
frontend_response = re.sub(r'Picture \d+:|<.*?>|\/tmp\/.*\.jpg', '', full_response).replace(text_input, '').strip()
|
33 |
|
34 |
+
# Desenhar caixas delimitadoras, se houver
|
35 |
+
image_with_boxes = tokenizer.draw_bbox_on_latest_picture(full_response)
|
36 |
|
37 |
+
# Salvar e recarregar a imagem para garantir que seja uma imagem PIL
|
38 |
+
if image_with_boxes:
|
39 |
+
temp_path = "/tmp/image_with_boxes.jpg"
|
40 |
+
image_with_boxes.save(temp_path)
|
41 |
+
image_with_boxes = Image.open(temp_path)
|
42 |
+
|
43 |
+
return image_with_boxes, frontend_response # Retornando a resposta formatada para o frontend
|
44 |
|
45 |
+
# Criar interface Gradio
|
46 |
+
# Create Gradio interface
|
47 |
iface = gr.Interface(
|
48 |
fn=generate_predictions,
|
49 |
+
inputs=[
|
50 |
+
gr.inputs.Image(label="Image Input"),
|
51 |
+
gr.inputs.Textbox(default="Generate a caption for that image with grounding:", label="Prompt")
|
52 |
+
],
|
53 |
+
outputs=[
|
54 |
+
gr.outputs.Image(type='pil', label="Image"), # Explicitly set type to 'pil'
|
55 |
+
gr.outputs.Textbox(label="Generated")
|
56 |
+
],
|
57 |
+
title="Qwen-VL Demonstration",
|
58 |
+
description = """
|
59 |
+
## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud
|
60 |
+
**Space by [@Artificialguybr](https://twitter.com/artificialguybr)**
|
61 |
+
|
62 |
+
### Key Features:
|
63 |
+
- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.
|
64 |
+
- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.
|
65 |
+
- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.
|
66 |
+
""",
|
67 |
)
|
68 |
+
iface.launch(share=True)
|
|