Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,016 Bytes
8c49cb6 df66f6e 314f91a b1a1395 8c49cb6 3dfaf22 c1b8a96 3dfaf22 b1a1395 8c49cb6 b1a1395 8c49cb6 b1a1395 8c49cb6 866ba51 adb0416 8c49cb6 866ba51 8c49cb6 866ba51 8c49cb6 eed1ccd 8c49cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return raw_data, df
# def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
# """Creates the different dataframes for the evaluation queues requestes"""
# entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
# all_evals = []
# for entry in entries:
# if ".json" in entry:
# file_path = os.path.join(save_path, entry)
# with open(file_path) as fp:
# print(file_path)
# print("\n")
# data = json.load(fp)
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
# all_evals.append(data)
# elif ".md" not in entry:
# # this is a folder
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
# for sub_entry in sub_entries:
# file_path = os.path.join(save_path, entry, sub_entry)
# with open(file_path) as fp:
# print(file_path)
# print("\n")
# data = json.load(fp)
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
# all_evals.append(data)
# pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
# running_list = [e for e in all_evals if e["status"] == "RUNNING"]
# finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
# df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
# df_running = pd.DataFrame.from_records(running_list, columns=cols)
# df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
# return df_finished[cols], df_running[cols], df_pending[cols]
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
try:
with open(file_path, encoding='utf-8') as fp:
data = json.load(fp)
except UnicodeDecodeError as e:
print(f"Unicode decoding error in {file_path}: {e}")
continue
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
try:
with open(file_path, encoding='utf-8') as fp:
data = json.load(fp)
except json.JSONDecodeError:
print(f"Error reading {file_path}")
continue
except UnicodeDecodeError as e:
print(f"Unicode decoding error in {file_path}: {e}")
continue
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|