Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
49a4ed6
1
Parent(s):
3994f5a
fix submit different revisions
Browse files- app.py +2 -2
- src/load_from_hub.py +6 -2
app.py
CHANGED
@@ -159,7 +159,7 @@ def add_new_eval(
|
|
159 |
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
160 |
|
161 |
# Check for duplicate submission
|
162 |
-
if
|
163 |
return styled_warning("This model has been already submitted.")
|
164 |
|
165 |
with open(out_path, "w") as f:
|
@@ -256,7 +256,7 @@ def filter_models(
|
|
256 |
|
257 |
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
|
258 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
259 |
-
filtered_df = filtered_df[params_column.between(numeric_interval[0][0], numeric_interval[-1][
|
260 |
|
261 |
return filtered_df
|
262 |
|
|
|
159 |
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
|
160 |
|
161 |
# Check for duplicate submission
|
162 |
+
if f"{model}_{revision}_{precision}" in requested_models:
|
163 |
return styled_warning("This model has been already submitted.")
|
164 |
|
165 |
with open(out_path, "w") as f:
|
|
|
256 |
|
257 |
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
|
258 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
259 |
+
filtered_df = filtered_df[params_column.between(numeric_interval[0][0], numeric_interval[-1][1])]
|
260 |
|
261 |
return filtered_df
|
262 |
|
src/load_from_hub.py
CHANGED
@@ -20,9 +20,13 @@ def get_all_requested_models(requested_models_dir: str) -> set[str]:
|
|
20 |
for root, _, files in os.walk(requested_models_dir):
|
21 |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
22 |
if current_depth == depth:
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
return set(
|
26 |
|
27 |
|
28 |
def load_all_info_from_hub(QUEUE_REPO: str, RESULTS_REPO: str, QUEUE_PATH: str, RESULTS_PATH: str) -> list[Repository]:
|
|
|
20 |
for root, _, files in os.walk(requested_models_dir):
|
21 |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
22 |
if current_depth == depth:
|
23 |
+
for file in files:
|
24 |
+
if not file.endswith(".json"): continue
|
25 |
+
with open(os.path.join(root, file), "r") as f:
|
26 |
+
info = json.load(f)
|
27 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
28 |
|
29 |
+
return set(file_names)
|
30 |
|
31 |
|
32 |
def load_all_info_from_hub(QUEUE_REPO: str, RESULTS_REPO: str, QUEUE_PATH: str, RESULTS_PATH: str) -> list[Repository]:
|