Spaces:
Sleeping
Sleeping
File size: 6,813 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from torch import nn as nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
from basicsr.utils.registry import ARCH_REGISTRY
@ARCH_REGISTRY.register()
class VGGStyleDiscriminator(nn.Module):
"""VGG style discriminator with input size 128 x 128 or 256 x 256.
It is used to train SRGAN, ESRGAN, and VideoGAN.
Args:
num_in_ch (int): Channel number of inputs. Default: 3.
num_feat (int): Channel number of base intermediate features.Default: 64.
"""
def __init__(self, num_in_ch, num_feat, input_size=128):
super(VGGStyleDiscriminator, self).__init__()
self.input_size = input_size
assert self.input_size == 128 or self.input_size == 256, (
f'input size must be 128 or 256, but received {input_size}')
self.conv0_0 = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1, bias=True)
self.conv0_1 = nn.Conv2d(num_feat, num_feat, 4, 2, 1, bias=False)
self.bn0_1 = nn.BatchNorm2d(num_feat, affine=True)
self.conv1_0 = nn.Conv2d(num_feat, num_feat * 2, 3, 1, 1, bias=False)
self.bn1_0 = nn.BatchNorm2d(num_feat * 2, affine=True)
self.conv1_1 = nn.Conv2d(num_feat * 2, num_feat * 2, 4, 2, 1, bias=False)
self.bn1_1 = nn.BatchNorm2d(num_feat * 2, affine=True)
self.conv2_0 = nn.Conv2d(num_feat * 2, num_feat * 4, 3, 1, 1, bias=False)
self.bn2_0 = nn.BatchNorm2d(num_feat * 4, affine=True)
self.conv2_1 = nn.Conv2d(num_feat * 4, num_feat * 4, 4, 2, 1, bias=False)
self.bn2_1 = nn.BatchNorm2d(num_feat * 4, affine=True)
self.conv3_0 = nn.Conv2d(num_feat * 4, num_feat * 8, 3, 1, 1, bias=False)
self.bn3_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
self.conv3_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
self.bn3_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
self.conv4_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
self.bn4_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
self.conv4_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
if self.input_size == 256:
self.conv5_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
self.bn5_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
self.conv5_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
self.bn5_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100)
self.linear2 = nn.Linear(100, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
assert x.size(2) == self.input_size, (f'Input size must be identical to input_size, but received {x.size()}.')
feat = self.lrelu(self.conv0_0(x))
feat = self.lrelu(self.bn0_1(self.conv0_1(feat))) # output spatial size: /2
feat = self.lrelu(self.bn1_0(self.conv1_0(feat)))
feat = self.lrelu(self.bn1_1(self.conv1_1(feat))) # output spatial size: /4
feat = self.lrelu(self.bn2_0(self.conv2_0(feat)))
feat = self.lrelu(self.bn2_1(self.conv2_1(feat))) # output spatial size: /8
feat = self.lrelu(self.bn3_0(self.conv3_0(feat)))
feat = self.lrelu(self.bn3_1(self.conv3_1(feat))) # output spatial size: /16
feat = self.lrelu(self.bn4_0(self.conv4_0(feat)))
feat = self.lrelu(self.bn4_1(self.conv4_1(feat))) # output spatial size: /32
if self.input_size == 256:
feat = self.lrelu(self.bn5_0(self.conv5_0(feat)))
feat = self.lrelu(self.bn5_1(self.conv5_1(feat))) # output spatial size: / 64
# spatial size: (4, 4)
feat = feat.view(feat.size(0), -1)
feat = self.lrelu(self.linear1(feat))
out = self.linear2(feat)
return out
@ARCH_REGISTRY.register(suffix='basicsr')
class UNetDiscriminatorSN(nn.Module):
"""Defines a U-Net discriminator with spectral normalization (SN)
It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
Arg:
num_in_ch (int): Channel number of inputs. Default: 3.
num_feat (int): Channel number of base intermediate features. Default: 64.
skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
"""
def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
super(UNetDiscriminatorSN, self).__init__()
self.skip_connection = skip_connection
norm = spectral_norm
# the first convolution
self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
# downsample
self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
# upsample
self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
# extra convolutions
self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
def forward(self, x):
# downsample
x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
# upsample
x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
if self.skip_connection:
x4 = x4 + x2
x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
if self.skip_connection:
x5 = x5 + x1
x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
if self.skip_connection:
x6 = x6 + x0
# extra convolutions
out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
out = self.conv9(out)
return out
|