Spaces:
Starting
on
T4
Starting
on
T4
import cv2 | |
import math | |
import numpy as np | |
import os | |
from scipy.ndimage import convolve | |
from scipy.special import gamma | |
from basicsr.metrics.metric_util import reorder_image, to_y_channel | |
from basicsr.utils.matlab_functions import imresize | |
from basicsr.utils.registry import METRIC_REGISTRY | |
def estimate_aggd_param(block): | |
"""Estimate AGGD (Asymmetric Generalized Gaussian Distribution) parameters. | |
Args: | |
block (ndarray): 2D Image block. | |
Returns: | |
tuple: alpha (float), beta_l (float) and beta_r (float) for the AGGD | |
distribution (Estimating the parames in Equation 7 in the paper). | |
""" | |
block = block.flatten() | |
gam = np.arange(0.2, 10.001, 0.001) # len = 9801 | |
gam_reciprocal = np.reciprocal(gam) | |
r_gam = np.square(gamma(gam_reciprocal * 2)) / (gamma(gam_reciprocal) * gamma(gam_reciprocal * 3)) | |
left_std = np.sqrt(np.mean(block[block < 0]**2)) | |
right_std = np.sqrt(np.mean(block[block > 0]**2)) | |
gammahat = left_std / right_std | |
rhat = (np.mean(np.abs(block)))**2 / np.mean(block**2) | |
rhatnorm = (rhat * (gammahat**3 + 1) * (gammahat + 1)) / ((gammahat**2 + 1)**2) | |
array_position = np.argmin((r_gam - rhatnorm)**2) | |
alpha = gam[array_position] | |
beta_l = left_std * np.sqrt(gamma(1 / alpha) / gamma(3 / alpha)) | |
beta_r = right_std * np.sqrt(gamma(1 / alpha) / gamma(3 / alpha)) | |
return (alpha, beta_l, beta_r) | |
def compute_feature(block): | |
"""Compute features. | |
Args: | |
block (ndarray): 2D Image block. | |
Returns: | |
list: Features with length of 18. | |
""" | |
feat = [] | |
alpha, beta_l, beta_r = estimate_aggd_param(block) | |
feat.extend([alpha, (beta_l + beta_r) / 2]) | |
# distortions disturb the fairly regular structure of natural images. | |
# This deviation can be captured by analyzing the sample distribution of | |
# the products of pairs of adjacent coefficients computed along | |
# horizontal, vertical and diagonal orientations. | |
shifts = [[0, 1], [1, 0], [1, 1], [1, -1]] | |
for i in range(len(shifts)): | |
shifted_block = np.roll(block, shifts[i], axis=(0, 1)) | |
alpha, beta_l, beta_r = estimate_aggd_param(block * shifted_block) | |
# Eq. 8 | |
mean = (beta_r - beta_l) * (gamma(2 / alpha) / gamma(1 / alpha)) | |
feat.extend([alpha, mean, beta_l, beta_r]) | |
return feat | |
def niqe(img, mu_pris_param, cov_pris_param, gaussian_window, block_size_h=96, block_size_w=96): | |
"""Calculate NIQE (Natural Image Quality Evaluator) metric. | |
``Paper: Making a "Completely Blind" Image Quality Analyzer`` | |
This implementation could produce almost the same results as the official | |
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip | |
Note that we do not include block overlap height and width, since they are | |
always 0 in the official implementation. | |
For good performance, it is advisable by the official implementation to | |
divide the distorted image in to the same size patched as used for the | |
construction of multivariate Gaussian model. | |
Args: | |
img (ndarray): Input image whose quality needs to be computed. The | |
image must be a gray or Y (of YCbCr) image with shape (h, w). | |
Range [0, 255] with float type. | |
mu_pris_param (ndarray): Mean of a pre-defined multivariate Gaussian | |
model calculated on the pristine dataset. | |
cov_pris_param (ndarray): Covariance of a pre-defined multivariate | |
Gaussian model calculated on the pristine dataset. | |
gaussian_window (ndarray): A 7x7 Gaussian window used for smoothing the | |
image. | |
block_size_h (int): Height of the blocks in to which image is divided. | |
Default: 96 (the official recommended value). | |
block_size_w (int): Width of the blocks in to which image is divided. | |
Default: 96 (the official recommended value). | |
""" | |
assert img.ndim == 2, ('Input image must be a gray or Y (of YCbCr) image with shape (h, w).') | |
# crop image | |
h, w = img.shape | |
num_block_h = math.floor(h / block_size_h) | |
num_block_w = math.floor(w / block_size_w) | |
img = img[0:num_block_h * block_size_h, 0:num_block_w * block_size_w] | |
distparam = [] # dist param is actually the multiscale features | |
for scale in (1, 2): # perform on two scales (1, 2) | |
mu = convolve(img, gaussian_window, mode='nearest') | |
sigma = np.sqrt(np.abs(convolve(np.square(img), gaussian_window, mode='nearest') - np.square(mu))) | |
# normalize, as in Eq. 1 in the paper | |
img_nomalized = (img - mu) / (sigma + 1) | |
feat = [] | |
for idx_w in range(num_block_w): | |
for idx_h in range(num_block_h): | |
# process ecah block | |
block = img_nomalized[idx_h * block_size_h // scale:(idx_h + 1) * block_size_h // scale, | |
idx_w * block_size_w // scale:(idx_w + 1) * block_size_w // scale] | |
feat.append(compute_feature(block)) | |
distparam.append(np.array(feat)) | |
if scale == 1: | |
img = imresize(img / 255., scale=0.5, antialiasing=True) | |
img = img * 255. | |
distparam = np.concatenate(distparam, axis=1) | |
# fit a MVG (multivariate Gaussian) model to distorted patch features | |
mu_distparam = np.nanmean(distparam, axis=0) | |
# use nancov. ref: https://ww2.mathworks.cn/help/stats/nancov.html | |
distparam_no_nan = distparam[~np.isnan(distparam).any(axis=1)] | |
cov_distparam = np.cov(distparam_no_nan, rowvar=False) | |
# compute niqe quality, Eq. 10 in the paper | |
invcov_param = np.linalg.pinv((cov_pris_param + cov_distparam) / 2) | |
quality = np.matmul( | |
np.matmul((mu_pris_param - mu_distparam), invcov_param), np.transpose((mu_pris_param - mu_distparam))) | |
quality = np.sqrt(quality) | |
quality = float(np.squeeze(quality)) | |
return quality | |
def calculate_niqe(img, crop_border, input_order='HWC', convert_to='y', **kwargs): | |
"""Calculate NIQE (Natural Image Quality Evaluator) metric. | |
``Paper: Making a "Completely Blind" Image Quality Analyzer`` | |
This implementation could produce almost the same results as the official | |
MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip | |
> MATLAB R2021a result for tests/data/baboon.png: 5.72957338 (5.7296) | |
> Our re-implementation result for tests/data/baboon.png: 5.7295763 (5.7296) | |
We use the official params estimated from the pristine dataset. | |
We use the recommended block size (96, 96) without overlaps. | |
Args: | |
img (ndarray): Input image whose quality needs to be computed. | |
The input image must be in range [0, 255] with float/int type. | |
The input_order of image can be 'HW' or 'HWC' or 'CHW'. (BGR order) | |
If the input order is 'HWC' or 'CHW', it will be converted to gray | |
or Y (of YCbCr) image according to the ``convert_to`` argument. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the metric calculation. | |
input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
convert_to (str): Whether converted to 'y' (of MATLAB YCbCr) or 'gray'. | |
Default: 'y'. | |
Returns: | |
float: NIQE result. | |
""" | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
# we use the official params estimated from the pristine dataset. | |
niqe_pris_params = np.load(os.path.join(ROOT_DIR, 'niqe_pris_params.npz')) | |
mu_pris_param = niqe_pris_params['mu_pris_param'] | |
cov_pris_param = niqe_pris_params['cov_pris_param'] | |
gaussian_window = niqe_pris_params['gaussian_window'] | |
img = img.astype(np.float32) | |
if input_order != 'HW': | |
img = reorder_image(img, input_order=input_order) | |
if convert_to == 'y': | |
img = to_y_channel(img) | |
elif convert_to == 'gray': | |
img = cv2.cvtColor(img / 255., cv2.COLOR_BGR2GRAY) * 255. | |
img = np.squeeze(img) | |
if crop_border != 0: | |
img = img[crop_border:-crop_border, crop_border:-crop_border] | |
# round is necessary for being consistent with MATLAB's result | |
img = img.round() | |
niqe_result = niqe(img, mu_pris_param, cov_pris_param, gaussian_window) | |
return niqe_result | |