Spaces:
Running
on
T4
Running
on
T4
import math | |
from collections import Counter | |
from torch.optim.lr_scheduler import _LRScheduler | |
class MultiStepRestartLR(_LRScheduler): | |
""" MultiStep with restarts learning rate scheme. | |
Args: | |
optimizer (torch.nn.optimizer): Torch optimizer. | |
milestones (list): Iterations that will decrease learning rate. | |
gamma (float): Decrease ratio. Default: 0.1. | |
restarts (list): Restart iterations. Default: [0]. | |
restart_weights (list): Restart weights at each restart iteration. | |
Default: [1]. | |
last_epoch (int): Used in _LRScheduler. Default: -1. | |
""" | |
def __init__(self, optimizer, milestones, gamma=0.1, restarts=(0, ), restart_weights=(1, ), last_epoch=-1): | |
self.milestones = Counter(milestones) | |
self.gamma = gamma | |
self.restarts = restarts | |
self.restart_weights = restart_weights | |
assert len(self.restarts) == len(self.restart_weights), 'restarts and their weights do not match.' | |
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
if self.last_epoch in self.restarts: | |
weight = self.restart_weights[self.restarts.index(self.last_epoch)] | |
return [group['initial_lr'] * weight for group in self.optimizer.param_groups] | |
if self.last_epoch not in self.milestones: | |
return [group['lr'] for group in self.optimizer.param_groups] | |
return [group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups] | |
def get_position_from_periods(iteration, cumulative_period): | |
"""Get the position from a period list. | |
It will return the index of the right-closest number in the period list. | |
For example, the cumulative_period = [100, 200, 300, 400], | |
if iteration == 50, return 0; | |
if iteration == 210, return 2; | |
if iteration == 300, return 2. | |
Args: | |
iteration (int): Current iteration. | |
cumulative_period (list[int]): Cumulative period list. | |
Returns: | |
int: The position of the right-closest number in the period list. | |
""" | |
for i, period in enumerate(cumulative_period): | |
if iteration <= period: | |
return i | |
class CosineAnnealingRestartLR(_LRScheduler): | |
""" Cosine annealing with restarts learning rate scheme. | |
An example of config: | |
periods = [10, 10, 10, 10] | |
restart_weights = [1, 0.5, 0.5, 0.5] | |
eta_min=1e-7 | |
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the | |
scheduler will restart with the weights in restart_weights. | |
Args: | |
optimizer (torch.nn.optimizer): Torch optimizer. | |
periods (list): Period for each cosine anneling cycle. | |
restart_weights (list): Restart weights at each restart iteration. | |
Default: [1]. | |
eta_min (float): The minimum lr. Default: 0. | |
last_epoch (int): Used in _LRScheduler. Default: -1. | |
""" | |
def __init__(self, optimizer, periods, restart_weights=(1, ), eta_min=0, last_epoch=-1): | |
self.periods = periods | |
self.restart_weights = restart_weights | |
self.eta_min = eta_min | |
assert (len(self.periods) == len( | |
self.restart_weights)), 'periods and restart_weights should have the same length.' | |
self.cumulative_period = [sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))] | |
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
idx = get_position_from_periods(self.last_epoch, self.cumulative_period) | |
current_weight = self.restart_weights[idx] | |
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1] | |
current_period = self.periods[idx] | |
return [ | |
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) * | |
(1 + math.cos(math.pi * ((self.last_epoch - nearest_restart) / current_period))) | |
for base_lr in self.base_lrs | |
] | |