Spaces:
Starting
on
T4
Starting
on
T4
import datetime | |
import logging | |
import math | |
import time | |
import torch | |
from os import path as osp | |
from basicsr.data import build_dataloader, build_dataset | |
from basicsr.data.data_sampler import EnlargedSampler | |
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher | |
from basicsr.models import build_model | |
from basicsr.utils import (AvgTimer, MessageLogger, check_resume, get_env_info, get_root_logger, get_time_str, | |
init_tb_logger, init_wandb_logger, make_exp_dirs, mkdir_and_rename, scandir) | |
from basicsr.utils.options import copy_opt_file, dict2str, parse_options | |
def init_tb_loggers(opt): | |
# initialize wandb logger before tensorboard logger to allow proper sync | |
if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') | |
is not None) and ('debug' not in opt['name']): | |
assert opt['logger'].get('use_tb_logger') is True, ('should turn on tensorboard when using wandb') | |
init_wandb_logger(opt) | |
tb_logger = None | |
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']: | |
tb_logger = init_tb_logger(log_dir=osp.join(opt['root_path'], 'tb_logger', opt['name'])) | |
return tb_logger | |
def create_train_val_dataloader(opt, logger): | |
# create train and val dataloaders | |
train_loader, val_loaders = None, [] | |
for phase, dataset_opt in opt['datasets'].items(): | |
if phase == 'train': | |
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1) | |
train_set = build_dataset(dataset_opt) | |
train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio) | |
train_loader = build_dataloader( | |
train_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=train_sampler, | |
seed=opt['manual_seed']) | |
num_iter_per_epoch = math.ceil( | |
len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size'])) | |
total_iters = int(opt['train']['total_iter']) | |
total_epochs = math.ceil(total_iters / (num_iter_per_epoch)) | |
logger.info('Training statistics:' | |
f'\n\tNumber of train images: {len(train_set)}' | |
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}' | |
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}' | |
f'\n\tWorld size (gpu number): {opt["world_size"]}' | |
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}' | |
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.') | |
elif phase.split('_')[0] == 'val': | |
val_set = build_dataset(dataset_opt) | |
val_loader = build_dataloader( | |
val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) | |
logger.info(f'Number of val images/folders in {dataset_opt["name"]}: {len(val_set)}') | |
val_loaders.append(val_loader) | |
else: | |
raise ValueError(f'Dataset phase {phase} is not recognized.') | |
return train_loader, train_sampler, val_loaders, total_epochs, total_iters | |
def load_resume_state(opt): | |
resume_state_path = None | |
if opt['auto_resume']: | |
state_path = osp.join('experiments', opt['name'], 'training_states') | |
if osp.isdir(state_path): | |
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False)) | |
if len(states) != 0: | |
states = [float(v.split('.state')[0]) for v in states] | |
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state') | |
opt['path']['resume_state'] = resume_state_path | |
else: | |
if opt['path'].get('resume_state'): | |
resume_state_path = opt['path']['resume_state'] | |
if resume_state_path is None: | |
resume_state = None | |
else: | |
device_id = torch.cuda.current_device() | |
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id)) | |
check_resume(opt, resume_state['iter']) | |
return resume_state | |
def train_pipeline(root_path): | |
# parse options, set distributed setting, set random seed | |
opt, args = parse_options(root_path, is_train=True) | |
opt['root_path'] = root_path | |
torch.backends.cudnn.benchmark = True | |
# torch.backends.cudnn.deterministic = True | |
# load resume states if necessary | |
resume_state = load_resume_state(opt) | |
# mkdir for experiments and logger | |
if resume_state is None: | |
make_exp_dirs(opt) | |
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name'] and opt['rank'] == 0: | |
mkdir_and_rename(osp.join(opt['root_path'], 'tb_logger', opt['name'])) | |
# copy the yml file to the experiment root | |
copy_opt_file(args.opt, opt['path']['experiments_root']) | |
# WARNING: should not use get_root_logger in the above codes, including the called functions | |
# Otherwise the logger will not be properly initialized | |
log_file = osp.join(opt['path']['log'], f"train_{opt['name']}_{get_time_str()}.log") | |
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) | |
logger.info(get_env_info()) | |
logger.info(dict2str(opt)) | |
# initialize wandb and tb loggers | |
tb_logger = init_tb_loggers(opt) | |
# create train and validation dataloaders | |
result = create_train_val_dataloader(opt, logger) | |
train_loader, train_sampler, val_loaders, total_epochs, total_iters = result | |
# create model | |
model = build_model(opt) | |
if resume_state: # resume training | |
model.resume_training(resume_state) # handle optimizers and schedulers | |
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, iter: {resume_state['iter']}.") | |
start_epoch = resume_state['epoch'] | |
current_iter = resume_state['iter'] | |
else: | |
start_epoch = 0 | |
current_iter = 0 | |
# create message logger (formatted outputs) | |
msg_logger = MessageLogger(opt, current_iter, tb_logger) | |
# dataloader prefetcher | |
prefetch_mode = opt['datasets']['train'].get('prefetch_mode') | |
if prefetch_mode is None or prefetch_mode == 'cpu': | |
prefetcher = CPUPrefetcher(train_loader) | |
elif prefetch_mode == 'cuda': | |
prefetcher = CUDAPrefetcher(train_loader, opt) | |
logger.info(f'Use {prefetch_mode} prefetch dataloader') | |
if opt['datasets']['train'].get('pin_memory') is not True: | |
raise ValueError('Please set pin_memory=True for CUDAPrefetcher.') | |
else: | |
raise ValueError(f"Wrong prefetch_mode {prefetch_mode}. Supported ones are: None, 'cuda', 'cpu'.") | |
# training | |
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}') | |
data_timer, iter_timer = AvgTimer(), AvgTimer() | |
start_time = time.time() | |
for epoch in range(start_epoch, total_epochs + 1): | |
train_sampler.set_epoch(epoch) | |
prefetcher.reset() | |
train_data = prefetcher.next() | |
while train_data is not None: | |
data_timer.record() | |
current_iter += 1 | |
if current_iter > total_iters: | |
break | |
# update learning rate | |
model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1)) | |
# training | |
model.feed_data(train_data) | |
model.optimize_parameters(current_iter) | |
iter_timer.record() | |
if current_iter == 1: | |
# reset start time in msg_logger for more accurate eta_time | |
# not work in resume mode | |
msg_logger.reset_start_time() | |
# log | |
if current_iter % opt['logger']['print_freq'] == 0: | |
log_vars = {'epoch': epoch, 'iter': current_iter} | |
log_vars.update({'lrs': model.get_current_learning_rate()}) | |
log_vars.update({'time': iter_timer.get_avg_time(), 'data_time': data_timer.get_avg_time()}) | |
log_vars.update(model.get_current_log()) | |
msg_logger(log_vars) | |
# save models and training states | |
if current_iter % opt['logger']['save_checkpoint_freq'] == 0: | |
logger.info('Saving models and training states.') | |
model.save(epoch, current_iter) | |
# validation | |
if opt.get('val') is not None and (current_iter % opt['val']['val_freq'] == 0): | |
if len(val_loaders) > 1: | |
logger.warning('Multiple validation datasets are *only* supported by SRModel.') | |
for val_loader in val_loaders: | |
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) | |
data_timer.start() | |
iter_timer.start() | |
train_data = prefetcher.next() | |
# end of iter | |
# end of epoch | |
consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time))) | |
logger.info(f'End of training. Time consumed: {consumed_time}') | |
logger.info('Save the latest model.') | |
model.save(epoch=-1, current_iter=-1) # -1 stands for the latest | |
if opt.get('val') is not None: | |
for val_loader in val_loaders: | |
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) | |
if tb_logger: | |
tb_logger.close() | |
if __name__ == '__main__': | |
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) | |
train_pipeline(root_path) | |