Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,966 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from ..models.attention import BasicTransformerBlock, FreeNoiseTransformerBlock
from ..models.unets.unet_motion_model import (
CrossAttnDownBlockMotion,
DownBlockMotion,
UpBlockMotion,
)
from ..utils import logging
from ..utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class AnimateDiffFreeNoiseMixin:
r"""Mixin class for [FreeNoise](https://arxiv.org/abs/2310.15169)."""
def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
r"""Helper function to enable FreeNoise in transformer blocks."""
for motion_module in block.motion_modules:
num_transformer_blocks = len(motion_module.transformer_blocks)
for i in range(num_transformer_blocks):
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
motion_module.transformer_blocks[i].set_free_noise_properties(
self._free_noise_context_length,
self._free_noise_context_stride,
self._free_noise_weighting_scheme,
)
else:
assert isinstance(motion_module.transformer_blocks[i], BasicTransformerBlock)
basic_transfomer_block = motion_module.transformer_blocks[i]
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock(
dim=basic_transfomer_block.dim,
num_attention_heads=basic_transfomer_block.num_attention_heads,
attention_head_dim=basic_transfomer_block.attention_head_dim,
dropout=basic_transfomer_block.dropout,
cross_attention_dim=basic_transfomer_block.cross_attention_dim,
activation_fn=basic_transfomer_block.activation_fn,
attention_bias=basic_transfomer_block.attention_bias,
only_cross_attention=basic_transfomer_block.only_cross_attention,
double_self_attention=basic_transfomer_block.double_self_attention,
positional_embeddings=basic_transfomer_block.positional_embeddings,
num_positional_embeddings=basic_transfomer_block.num_positional_embeddings,
context_length=self._free_noise_context_length,
context_stride=self._free_noise_context_stride,
weighting_scheme=self._free_noise_weighting_scheme,
).to(device=self.device, dtype=self.dtype)
motion_module.transformer_blocks[i].load_state_dict(
basic_transfomer_block.state_dict(), strict=True
)
def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
r"""Helper function to disable FreeNoise in transformer blocks."""
for motion_module in block.motion_modules:
num_transformer_blocks = len(motion_module.transformer_blocks)
for i in range(num_transformer_blocks):
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
free_noise_transfomer_block = motion_module.transformer_blocks[i]
motion_module.transformer_blocks[i] = BasicTransformerBlock(
dim=free_noise_transfomer_block.dim,
num_attention_heads=free_noise_transfomer_block.num_attention_heads,
attention_head_dim=free_noise_transfomer_block.attention_head_dim,
dropout=free_noise_transfomer_block.dropout,
cross_attention_dim=free_noise_transfomer_block.cross_attention_dim,
activation_fn=free_noise_transfomer_block.activation_fn,
attention_bias=free_noise_transfomer_block.attention_bias,
only_cross_attention=free_noise_transfomer_block.only_cross_attention,
double_self_attention=free_noise_transfomer_block.double_self_attention,
positional_embeddings=free_noise_transfomer_block.positional_embeddings,
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings,
).to(device=self.device, dtype=self.dtype)
motion_module.transformer_blocks[i].load_state_dict(
free_noise_transfomer_block.state_dict(), strict=True
)
def _prepare_latents_free_noise(
self,
batch_size: int,
num_channels_latents: int,
num_frames: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
context_num_frames = (
self._free_noise_context_length if self._free_noise_context_length == "repeat_context" else num_frames
)
shape = (
batch_size,
num_channels_latents,
context_num_frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
if self._free_noise_noise_type == "random":
return latents
else:
if latents.size(2) == num_frames:
return latents
elif latents.size(2) != self._free_noise_context_length:
raise ValueError(
f"You have passed `latents` as a parameter to FreeNoise. The expected number of frames is either {num_frames} or {self._free_noise_context_length}, but found {latents.size(2)}"
)
latents = latents.to(device)
if self._free_noise_noise_type == "shuffle_context":
for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride):
# ensure window is within bounds
window_start = max(0, i - self._free_noise_context_length)
window_end = min(num_frames, window_start + self._free_noise_context_stride)
window_length = window_end - window_start
if window_length == 0:
break
indices = torch.LongTensor(list(range(window_start, window_end)))
shuffled_indices = indices[torch.randperm(window_length, generator=generator)]
current_start = i
current_end = min(num_frames, current_start + window_length)
if current_end == current_start + window_length:
# batch of frames perfectly fits the window
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
else:
# handle the case where the last batch of frames does not fit perfectly with the window
prefix_length = current_end - current_start
shuffled_indices = shuffled_indices[:prefix_length]
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
elif self._free_noise_noise_type == "repeat_context":
num_repeats = (num_frames + self._free_noise_context_length - 1) // self._free_noise_context_length
latents = torch.cat([latents] * num_repeats, dim=2)
latents = latents[:, :, :num_frames]
return latents
def enable_free_noise(
self,
context_length: Optional[int] = 16,
context_stride: int = 4,
weighting_scheme: str = "pyramid",
noise_type: str = "shuffle_context",
) -> None:
r"""
Enable long video generation using FreeNoise.
Args:
context_length (`int`, defaults to `16`, *optional*):
The number of video frames to process at once. It's recommended to set this to the maximum frames the
Motion Adapter was trained with (usually 16/24/32). If `None`, the default value from the motion
adapter config is used.
context_stride (`int`, *optional*):
Long videos are generated by processing many frames. FreeNoise processes these frames in sliding
windows of size `context_length`. Context stride allows you to specify how many frames to skip between
each window. For example, a context length of 16 and context stride of 4 would process 24 frames as:
[0, 15], [4, 19], [8, 23] (0-based indexing)
weighting_scheme (`str`, defaults to `pyramid`):
Weighting scheme for averaging latents after accumulation in FreeNoise blocks. The following weighting
schemes are supported currently:
- "pyramid"
Peforms weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1].
noise_type (`str`, defaults to "shuffle_context"):
TODO
"""
allowed_weighting_scheme = ["pyramid"]
allowed_noise_type = ["shuffle_context", "repeat_context", "random"]
if context_length > self.motion_adapter.config.motion_max_seq_length:
logger.warning(
f"You have set {context_length=} which is greater than {self.motion_adapter.config.motion_max_seq_length=}. This can lead to bad generation results."
)
if weighting_scheme not in allowed_weighting_scheme:
raise ValueError(
f"The parameter `weighting_scheme` must be one of {allowed_weighting_scheme}, but got {weighting_scheme=}"
)
if noise_type not in allowed_noise_type:
raise ValueError(f"The parameter `noise_type` must be one of {allowed_noise_type}, but got {noise_type=}")
self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length
self._free_noise_context_stride = context_stride
self._free_noise_weighting_scheme = weighting_scheme
self._free_noise_noise_type = noise_type
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
for block in blocks:
self._enable_free_noise_in_block(block)
def disable_free_noise(self) -> None:
self._free_noise_context_length = None
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
for block in blocks:
self._disable_free_noise_in_block(block)
@property
def free_noise_enabled(self):
return hasattr(self, "_free_noise_context_length") and self._free_noise_context_length is not None
|