Spaces:
Build error
Build error
from maskrcnn_benchmark.data import datasets | |
from .coco import coco_evaluation | |
from .voc import voc_evaluation | |
from .vg import vg_evaluation | |
from .box_aug import im_detect_bbox_aug | |
from .od_to_grounding import od_to_grounding_evaluation | |
def evaluate(dataset, predictions, output_folder, **kwargs): | |
"""evaluate dataset using different methods based on dataset type. | |
Args: | |
dataset: Dataset object | |
predictions(list[BoxList]): each item in the list represents the | |
prediction results for one image. | |
output_folder: output folder, to save evaluation files or results. | |
**kwargs: other args. | |
Returns: | |
evaluation result | |
""" | |
args = dict( | |
dataset=dataset, predictions=predictions, output_folder=output_folder, **kwargs | |
) | |
if isinstance(dataset, datasets.COCODataset) or isinstance(dataset, datasets.TSVDataset): | |
return coco_evaluation(**args) | |
# elif isinstance(dataset, datasets.VGTSVDataset): | |
# return vg_evaluation(**args) | |
elif isinstance(dataset, datasets.PascalVOCDataset): | |
return voc_evaluation(**args) | |
elif isinstance(dataset, datasets.CocoDetectionTSV): | |
return od_to_grounding_evaluation(**args) | |
elif isinstance(dataset, datasets.LvisDetection): | |
pass | |
else: | |
dataset_name = dataset.__class__.__name__ | |
raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name)) | |
def evaluate_mdetr(dataset, predictions, output_folder, cfg): | |
args = dict( | |
dataset=dataset, predictions=predictions, output_folder=output_folder, **kwargs | |
) | |
if isinstance(dataset, datasets.COCODataset) or isinstance(dataset, datasets.TSVDataset): | |
return coco_evaluation(**args) | |
# elif isinstance(dataset, datasets.VGTSVDataset): | |
# return vg_evaluation(**args) | |
elif isinstance(dataset, datasets.PascalVOCDataset): | |
return voc_evaluation(**args) | |
elif isinstance(dataset, datasets.CocoDetectionTSV): | |
return od_to_grounding_evaluation(**args) | |
elif isinstance(dataset, datasets.LvisDetection): | |
pass | |
else: | |
dataset_name = dataset.__class__.__name__ | |
raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name)) | |