Spaces:
Runtime error
Runtime error
Commit
·
0a8f6e9
1
Parent(s):
b2c66cc
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
'''
|
2 |
-
|
|
|
3 |
'''
|
4 |
|
5 |
import gradio as gr
|
@@ -69,35 +70,66 @@ delta_weights = 'OFA-Sys/expertllama-7b-delta'
|
|
69 |
model, tokenizer = apply_delta(base_weights, target_weights, delta_weights)
|
70 |
model = model.to(torch.float)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
-
|
92 |
-
|
93 |
-
bot_message = tokenizer.decode(generated[0][:-2]).split("### Assistant:\n", 1)[1]
|
94 |
-
|
95 |
-
chat_history.append((message, bot_message))
|
96 |
-
time.sleep(1)
|
97 |
-
|
98 |
-
return "", chat_history
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
'''
|
2 |
+
CREDIT:
|
3 |
+
script adapted from [alpaca](https://huggingface.co/spaces/tloen/alpaca-lora/blob/main/app.py).
|
4 |
'''
|
5 |
|
6 |
import gradio as gr
|
|
|
70 |
model, tokenizer = apply_delta(base_weights, target_weights, delta_weights)
|
71 |
model = model.to(torch.float)
|
72 |
|
73 |
+
if torch.__version__ >= "2":
|
74 |
+
model = torch.compile(model)
|
75 |
+
|
76 |
+
def respond(
|
77 |
+
instruction,
|
78 |
+
temperature=0.1,
|
79 |
+
top_p=0.75,
|
80 |
+
top_k=40,
|
81 |
+
num_beams=4,
|
82 |
+
max_new_tokens=128,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
# prompt wrapper, only single-turn is allowed for now
|
86 |
+
prompt = f"### Human:\n{message}\n\n### Assistant:\n"
|
87 |
+
inputs = tokenizer(
|
88 |
+
prompt,
|
89 |
+
return_tensors="pt",
|
90 |
+
add_special_tokens=False
|
91 |
+
)
|
92 |
+
generation_config = GenerationConfig(
|
93 |
+
temperature=temperature,
|
94 |
+
top_p=top_p,
|
95 |
+
top_k=top_k,
|
96 |
+
num_beams=num_beams,
|
97 |
+
**kwargs,
|
98 |
+
)
|
99 |
+
with torch.no_grad():
|
100 |
+
generation_output = model.generate(
|
101 |
+
input_ids=inputs["input_ids"],
|
102 |
+
generation_config=generation_config,
|
103 |
+
return_dict_in_generate=True,
|
104 |
+
output_scores=True,
|
105 |
+
max_new_tokens=max_new_tokens,
|
106 |
)
|
107 |
+
response = tokenizer.decode(generated[0][:-2]).split("### Assistant:\n", 1)[1]
|
108 |
+
return output.split("### Response:")[1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
|
111 |
+
g = gr.Interface(
|
112 |
+
fn=respond,
|
113 |
+
inputs=[
|
114 |
+
gr.components.Textbox(
|
115 |
+
lines=2, label="Instruction", placeholder="Name three best coffee around the world."
|
116 |
+
),
|
117 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
118 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
119 |
+
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
120 |
+
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
121 |
+
gr.components.Slider(
|
122 |
+
minimum=1, maximum=768, step=1, value=128, label="Max tokens"
|
123 |
+
),
|
124 |
+
],
|
125 |
+
outputs=[
|
126 |
+
gr.inputs.Textbox(
|
127 |
+
lines=5,
|
128 |
+
label="Output",
|
129 |
+
)
|
130 |
+
],
|
131 |
+
title="ExpertLLaMA",
|
132 |
+
description="ExpertLLaMA is a open-source chatbot trained on expert instructed data produce with GPT-3.5, see our [project repo](https://github.com/OFA-Sys/ExpertLLaMA) for details.",
|
133 |
+
)
|
134 |
+
g.queue(concurrency_count=1)
|
135 |
+
g.launch()
|