Spaces:
Runtime error
Runtime error
Commit
·
99660e9
1
Parent(s):
a7e983f
Upload folder using huggingface_hub
Browse files- app.py +97 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
simple demo adapted from [gradio](https://gradio.app/creating-a-chatbot/).
|
3 |
+
'''
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
import transformers
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
import torch
|
12 |
+
import argparse
|
13 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
14 |
+
|
15 |
+
|
16 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
17 |
+
print(f"Loading the delta weights from {delta_path}")
|
18 |
+
delta_tokenizer = LlamaTokenizer.from_pretrained(delta_path, use_fast=False)
|
19 |
+
delta = LlamaForCausalLM.from_pretrained(
|
20 |
+
delta_path, low_cpu_mem_usage=True, torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
|
23 |
+
print(f"Loading the base model from {base_model_path}")
|
24 |
+
base_tokenizer = LlamaTokenizer.from_pretrained(base_model_path, use_fast=False)
|
25 |
+
base = LlamaForCausalLM.from_pretrained(
|
26 |
+
base_model_path, low_cpu_mem_usage=True
|
27 |
+
)
|
28 |
+
|
29 |
+
# following alpaca training recipe, we have added new initialized tokens
|
30 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
31 |
+
DEFAULT_EOS_TOKEN = "</s>"
|
32 |
+
DEFAULT_BOS_TOKEN = "<s>"
|
33 |
+
DEFAULT_UNK_TOKEN = "<unk>"
|
34 |
+
special_tokens_dict = {
|
35 |
+
"pad_token": DEFAULT_PAD_TOKEN,
|
36 |
+
"eos_token": DEFAULT_EOS_TOKEN,
|
37 |
+
"bos_token": DEFAULT_BOS_TOKEN,
|
38 |
+
"unk_token": DEFAULT_UNK_TOKEN,
|
39 |
+
}
|
40 |
+
num_new_tokens = base_tokenizer.add_special_tokens(special_tokens_dict)
|
41 |
+
base.resize_token_embeddings(len(base_tokenizer))
|
42 |
+
input_embeddings = base.get_input_embeddings().weight.data
|
43 |
+
output_embeddings = base.get_output_embeddings().weight.data
|
44 |
+
|
45 |
+
input_embeddings[-num_new_tokens:] = 0
|
46 |
+
output_embeddings[-num_new_tokens:] = 0
|
47 |
+
|
48 |
+
print("Applying the delta")
|
49 |
+
target_weights = {}
|
50 |
+
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
|
51 |
+
assert name in delta.state_dict()
|
52 |
+
param.data += delta.state_dict()[name]
|
53 |
+
target_weights[name] = param.data
|
54 |
+
|
55 |
+
print(f"Saving the target model to {target_model_path}")
|
56 |
+
base.load_state_dict(target_weights)
|
57 |
+
base.save_pretrained(target_model_path)
|
58 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
59 |
+
|
60 |
+
|
61 |
+
base_weights = 'decapoda-research/llama-7b-hf'
|
62 |
+
target_weights = 'expertllama' # local path
|
63 |
+
delta_weights = 'OFA-Sys/expertllama-7b-delta'
|
64 |
+
apply_delta(base_weights, target_weights, delta_weights)
|
65 |
+
|
66 |
+
tokenizer = transformers.LlamaTokenizer.from_pretrained(expertllama_path)
|
67 |
+
model = transformers.LlamaForCausalLM.from_pretrained(expertllama_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
68 |
+
# model.cuda()
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
chatbot = gr.Chatbot()
|
72 |
+
msg = gr.Textbox()
|
73 |
+
clear = gr.Button("Clear")
|
74 |
+
|
75 |
+
def respond(message, chat_history):
|
76 |
+
|
77 |
+
# prompt wrapper, only single-turn is allowed for now
|
78 |
+
prompt = f"### Human:\n{prompt}\n\n### Assistant:\n"
|
79 |
+
|
80 |
+
batch = tokenizer(
|
81 |
+
prompt,
|
82 |
+
return_tensors="pt",
|
83 |
+
add_special_tokens=False
|
84 |
+
)
|
85 |
+
batch = {k: v.cuda() for k, v in batch.items()}
|
86 |
+
generated = model.generate(batch["input_ids"], max_length=1024, temperature=0.8)
|
87 |
+
bot_message = tokenizer.decode(generated[0][:-1]).split("### Assistant:\n", 1)[1]
|
88 |
+
|
89 |
+
chat_history.append((message, bot_message))
|
90 |
+
time.sleep(1)
|
91 |
+
|
92 |
+
return "", chat_history
|
93 |
+
|
94 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
95 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
96 |
+
|
97 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|