Spaces:
Sleeping
Sleeping
File size: 5,568 Bytes
3454d4e a597d85 3454d4e f0f9974 3454d4e b7d66a6 3454d4e b7d66a6 d629bf0 3454d4e 3392db1 fae4d2b dac12cb 3454d4e d7cee39 3454d4e a597d85 3454d4e b7d66a6 baacd14 c159493 baacd14 3454d4e 6c15309 baacd14 2ff38f2 3454d4e 2ff38f2 3454d4e 534ce84 ef6bd85 e2a7aa8 3454d4e 1ab0b83 8bfdd29 baacd14 a3068be 2ff38f2 a3068be e28154f 3454d4e d7cee39 baacd14 3454d4e d7cee39 a64958d d7cee39 3454d4e 2ff38f2 3454d4e a64958d f0f9974 3454d4e ae23c23 a9e7bc2 ae23c23 2ff38f2 3454d4e 2ff38f2 25a1096 2ff38f2 25a1096 aa43d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import streamlit as st
from transformers import pipeline
st.set_page_config(page_title="Common NLP Tasks")
st.title("Common NLP Tasks")
st.subheader("Use the menu on the left to select a NLP task (click on > if closed).")
expander = st.sidebar.expander("About")
expander.write("This web app allows you to perform common Natural Language Processing tasks, select a task below to get started.")
st.sidebar.header("What will you like to do?")
option = st.sidebar.radio("", ["Extractive question answering", "Text summarization", "Text generation"])
@st.cache(show_spinner=False, allow_output_mutation=True)
def question_model():
model_name = "deepset/roberta-base-squad2"
question_answerer = pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
return question_answerer
@st.cache(show_spinner=False, allow_output_mutation=True)
def summarization_model():
model_name = "google/pegasus-xsum"
summarizer = pipeline(model=model_name, tokenizer=model_name, task="summarization")
return summarizer
@st.cache(show_spinner=False, allow_output_mutation=True)
def generation_model():
model_name = "distilgpt2"
generator = pipeline(model=model_name, tokenizer=model_name, task="text-generation")
return generator
if option == "Extractive question answering":
st.markdown("<h2 style='text-align: center; color:grey;'>Extract answer from text</h2>", unsafe_allow_html=True)
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
sample_question = "What did the shepherd boy do to amuse himself?"
if source == "I want to input some text":
with open("sample.txt", "r") as text_file:
sample_text = text_file.read()
context = st.text_area("Use the example below or input your own text in English (10,000 characters max)", value=sample_text, max_chars=10000, height=330)
question = st.text_input(label="Use the question below or enter your own question", value=sample_question)
button = st.button("Get answer")
if button:
with st.spinner(text="Loading question model..."):
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
answer = answer["answer"]
html_str = f"<p style='color:red;'>{answer}</p>"
st.markdown(html_str, unsafe_allow_html=True)
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
if uploaded_file is not None:
raw_text = str(uploaded_file.read(),"utf-8")
context = st.text_area("", value=raw_text, height=330)
question = st.text_input(label="Enter your question", value=sample_question)
button = st.button("Get answer")
if button:
with st.spinner(text="Loading summarization model..."):
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
answer = answer["answer"]
st.text(answer)
elif option == "Text summarization":
st.markdown("<h2 style='text-align: center; color:grey;'>Summarize text</h2>", unsafe_allow_html=True)
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
if source == "I want to input some text":
with open("sample.txt", "r") as text_file:
sample_text = text_file.read()
text = st.text_area("Input a text in English (10,000 characters max) or use the example below", value=sample_text, max_chars=10000, height=330)
button = st.button("Get summary")
if button:
with st.spinner(text="Loading summarization model..."):
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary[0]["summary_text"])
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
if uploaded_file is not None:
raw_text = str(uploaded_file.read(),"utf-8")
text = st.text_area("", value=raw_text, height=330)
button = st.button("Get summary")
if button:
with st.spinner(text="Loading summarization model..."):
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary[0]["summary_text"])
elif option == "Text generation":
st.markdown("<h2 style='text-align: center; color:grey;'>Generate text</h2>", unsafe_allow_html=True)
text = st.text_input(label="Enter one line of text and let the NLP model generate the rest for you")
button = st.button("Generate text")
if button:
with st.spinner(text="Loading text generation model..."):
generator = generation_model()
with st.spinner(text="Generating text..."):
generated_text = generator(text, max_length=50)
st.write(generated_text[0]["generated_text"]) |