import subprocess import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, NUMERIC_INTERVALS, TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN # from src.populate import get_evaluation_queue_df, get_leaderboard_df # from src.submission.submit import add_new_eval # from PIL import Image # from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf # import copy def load_data(data_path): columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] columns_sorted = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] df = pd.read_csv(data_path).dropna() # df['Post-ASR'] = df['Post-ASR'].round(0) # rank according to the Score column df = df.sort_values(by='Post-ASR', ascending=False) # reorder the columns df = df[columns_sorted] return df def restart_space(): API.restart_space(repo_id=REPO_ID) # try: # print(EVAL_REQUESTS_PATH) # snapshot_download( # repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN # ) # except Exception: # restart_space() # try: # print(EVAL_RESULTS_PATH) # snapshot_download( # repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN # ) # except Exception: # restart_space() # raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) # leaderboard_df = original_df.copy() # ( # finished_eval_queue_df, # running_eval_queue_df, # pending_eval_queue_df, # ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) all_columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] show_columns = ['Unlearned_Methods','Pre-ASR','Post-ASR','FID','CLIP-Score'] TYPES = ['str','number','number','number','number'] files = ['nudity','vangogh', 'church','garbage','parachute','tench'] csv_path='./assets/'+files[0]+'.csv' df_results = load_data(csv_path) methods = list(set(df_results['Unlearned_Methods'])) df_results_init = df_results.copy()[show_columns] def update_table( hidden_df: pd.DataFrame, model1_column: list, #type_query: list, #open_query: list, # precision_query: str, # size_query: list, # show_deleted: bool, query: str, ): # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) # filtered_df = filter_queries(query, filtered_df) # df = select_columns(filtered_df, columns) filtered_df = hidden_df.copy() # print(open_query) # filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)] # map_open = {'open': 'Yes', 'closed': 'No'} # filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])] filtered_df=select_columns(filtered_df,model1_column) filtered_df = filter_queries(query, filtered_df) # map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'} # filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])] # filtered_df = filtered_df[[map_columns[k] for k in columns]] # deduplication # df = df.drop_duplicates(subset=["Model"]) df = filtered_df.drop_duplicates() # df = df[show_columns] return df def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df['Unlearned_Methods'].str.contains(query, case=False))] def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: _q = _q.strip() if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) return filtered_df def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df['Diffusion_Models'].str.contains(query, case=False))] def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] # if query != "": # queries = [q.strip() for q in query.split(";")] for _q in query: print(_q) if _q != "": temp_filtered_df = search_table_model(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) return filtered_df def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame: always_here_cols = ['Unlearned_Methods'] # We use COLS to maintain sorting all_columns =['Pre-ASR','Post-ASR','FID','CLIP-Score'] if (len(columns_1)) == 0: filtered_df = df[ always_here_cols + [c for c in all_columns if c in df.columns] ] else: filtered_df = df[ always_here_cols + [c for c in all_columns if c in df.columns and (c in columns_1) ] ] return filtered_df demo = gr.Blocks(css=custom_css) with demo: with gr.Row(): gr.Image("./assets/logo.png", height="1535px", width="875px", scale=0.3, show_download_button=False, container=False) gr.HTML(TITLE, elem_id="title") gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text") gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="reference-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("NSFW", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0): files = ['nudity'] with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): model1_column = gr.CheckboxGroup( label="Evaluation Metrics", choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'], interactive=True, elem_id="column-select", ) for i in range(len(files)): if files[i] == 'nudity': name = "### [Unlearned Concept]: "+" Nudity" csv_path = './assets/'+files[i]+'.csv' # elif files[i] == 'violence': # name = "### Unlearned Concepts "+" Violence" # csv_path = './assets/'+files[i]+'.csv' # elif files[i] == 'illegal_activity': # name = "### Unlearned Concepts "+" Illgal Activity" # csv_path = './assets/'+files[i]+'.csv' gr.Markdown(name) df_results = load_data(csv_path) df_results_init = df_results.copy()[show_columns] leaderboard_table = gr.components.Dataframe( value = df_results, datatype = TYPES, elem_id = "leaderboard-table", interactive = False, visible=True, ) hidden_leaderboard_table_for_search = gr.components.Dataframe( value=df_results_init, # value=df_results, interactive=False, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) for selector in [model1_column]: selector.change( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) with gr.TabItem("Style", elem_id="Style", id=1): files = ['vangogh'] with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): model1_column = gr.CheckboxGroup( label="Evaluation Metrics", choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'], interactive=True, elem_id="column-select", ) for i in range(len(files)): if files[i] == 'vangogh': name = "### [Unlearned Style]: "+" Van Gogh" csv_path = './assets/'+files[i]+'.csv' gr.Markdown(name) df_results = load_data(csv_path) df_results_init = df_results.copy()[show_columns] leaderboard_table = gr.components.Dataframe( value = df_results, datatype = TYPES, elem_id = "leaderboard-table", interactive = False, visible=True, ) hidden_leaderboard_table_for_search = gr.components.Dataframe( value=df_results_init, # value=df_results, interactive=False, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) for selector in [model1_column]: selector.change( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) with gr.TabItem("Object", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=2): files = ['church','garbage','parachute','tench'] with gr.Row(): with gr.Column(): with gr.Row(): search_bar = gr.Textbox( placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", show_label=False, elem_id="search-bar", ) with gr.Row(): model1_column = gr.CheckboxGroup( label="Evaluation Metrics", choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'], interactive=True, elem_id="column-select", ) for i in range(len(files)): if files[i] == "church": name = "### [Unlearned Object]: "+" Church" csv_path = './assets/'+files[i]+'.csv' elif files[i] == 'garbage': name = "### [Unlearned Object]: "+" Garbage" csv_path = './assets/'+files[i]+'.csv' elif files[i] == 'tench': name = "### [Unlearned Object]: "+" Tench" csv_path = './assets/'+files[i]+'.csv' elif files[i] == 'parachute': name = "### [Unlearned Object]: "+" Parachute" csv_path = './assets/'+files[i]+'.csv' gr.Markdown(name) df_results = load_data(csv_path) df_results_init = df_results.copy()[show_columns] leaderboard_table = gr.components.Dataframe( value = df_results, datatype = TYPES, elem_id = "leaderboard-table", interactive = False, visible=True, ) hidden_leaderboard_table_for_search = gr.components.Dataframe( value=df_results_init, # value=df_results, interactive=False, visible=False, ) search_bar.submit( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) for selector in [model1_column]: selector.change( update_table, [ hidden_leaderboard_table_for_search, model1_column, search_bar, ], leaderboard_table, ) with gr.Row(): with gr.Accordion("📙 Citation", open=True): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=10, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue().launch(share=True)