File size: 5,590 Bytes
924e8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec838b3
924e8f7
ec838b3
924e8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec838b3
924e8f7
ec838b3
924e8f7
 
 
 
 
ec838b3
924e8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda716e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
import os
import re

import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence, _clean_text
from mel_processing import spectrogram_torch

from text.symbols import symbols

limitation = os.getenv("SYSTEM") == "spaces"  # limit text and audio length in huggingface spaces

device = 'cpu'

def get_text(text, hps):
    text_norm = text_to_sequence(text, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm


def create_tts_fn(model, hps, speaker_ids):
    def tts_fn(text, speaker, speed):
        print(speaker, text)
        if limitation:
            text_len = len(text)
            max_len = 500
            if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners":
                text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text))
            if text_len > max_len:
                return "Error: Text is too long", None

        speaker_id = speaker_ids[speaker]
        stn_tst = get_text(text, hps)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0)
            x_tst_lengths = LongTensor([stn_tst.size(0)])
            sid = LongTensor([speaker_id])
            audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
                                length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
        del stn_tst, x_tst, x_tst_lengths, sid
        return "Success", (hps.data.sampling_rate, audio)

    return tts_fn


def create_to_phoneme_fn(hps):
    def to_phoneme_fn(text):
        return _clean_text(text, hps.data.text_cleaners) if text != "" else ""

    return to_phoneme_fn


css = """
        #advanced-btn {
            color: white;
            border-color: black;
            background: black;
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 24px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
"""

if __name__ == '__main__':
    models_tts = []
    name = 'HioriTTS'
    lang = 'ζ—₯本θͺž (Japanese)'
    example = 'プロデγƒ₯γƒΌγ‚΅γƒΌγ€δ»Šζ—₯も良い一ζ—₯を!'
    config_path = f"saved_model/config.json"
    model_path = f"saved_model/model.pth"
    cover_path = f"saved_model/cover.png"
    hps = utils.get_hparams_from_file(config_path)

    if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:
        print("Using mel posterior encoder for VITS2")
        posterior_channels = 80  # vits2
        hps.data.use_mel_posterior_encoder = True
    else:
        print("Using lin posterior encoder for VITS1")
        posterior_channels = hps.data.filter_length // 2 + 1
        hps.data.use_mel_posterior_encoder = False

    model = SynthesizerTrn(
        len(symbols),
        posterior_channels,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers, #- >0 for multi speaker
        **hps.model)
    utils.load_checkpoint(model_path, model, None)
    model.eval()
    speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
    speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]

    t = 'vits'
    models_tts.append((name, cover_path, speakers, lang, example,
                        symbols, create_tts_fn(model, hps, speaker_ids),
                        create_to_phoneme_fn(hps)))
                               

    app = gr.Blocks(css=css)

    with app:
        gr.Markdown("# HioriTTS Using VITS2 Model\n\n"
                    "## Model Updated: VITS -> VITS2\n\n"
                    "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=ORI-Muchim.HioriTTS)\n\n")
        with gr.Tabs():
            with gr.TabItem("TTS"):
                with gr.Tabs():
                    for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
                            to_phoneme_fn) in enumerate(models_tts):
                        with gr.TabItem(f"Hiori"):
                            with gr.Column():
                                gr.Markdown(f"## {name}\n\n"
                                            f"![cover](file/{cover_path})\n\n"
                                            f"lang: {lang}")
                                tts_input1 = gr.TextArea(label="Text (500 words limitation)", value=example,
                                                         elem_id=f"tts-input{i}")
                                tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
                                                         type="index", value=speakers[0])
                                tts_input3 = gr.Slider(label="Speed", value=1.2, minimum=0.1, maximum=2, step=0.1)
                                tts_submit = gr.Button("Generate", variant="primary")
                                tts_output1 = gr.Textbox(label="Output Message")
                                tts_output2 = gr.Audio(label="Output Audio")
                                tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
                                                 [tts_output1, tts_output2])
    
    app.queue(default_concurrency_limit=8).launch(show_api=False, allowed_paths=["/"])