Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
peft_model_id = "OS07/Letsee"
|
9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_4bit=True, device_map='auto')
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
12 |
+
|
13 |
+
# Load the Lora model
|
14 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
15 |
+
|
16 |
+
def get_result(query):
|
17 |
+
pipe = pipeline("text-generation", model="OS07/Letsee", torch_dtype=torch.bfloat16, device_map="auto")
|
18 |
+
prompt_template = "<|system|>\n<|end|>\n<|user|>\n{query}<|end|>\n<|assistant|>"
|
19 |
+
prompt = prompt_template.format(query=query)
|
20 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=50, top_p=0.95, eos_token_id=49155)
|
21 |
+
if outputs:
|
22 |
+
result = generated_output_filtering(outputs)
|
23 |
+
return result
|
24 |
+
|
25 |
+
def generated_output_filtering(output):
|
26 |
+
if len(output) > 0:
|
27 |
+
str1=str(list(output[0].values()))
|
28 |
+
if 'assistant' in str1:
|
29 |
+
result=str1[str1.find('|assistant|')+len('|assistant|>'):]
|
30 |
+
return result
|
31 |
+
else:
|
32 |
+
return None
|
33 |
+
|
34 |
+
#result=generated_output_filtering(outputs)
|
35 |
+
#result
|
36 |
+
|
37 |
+
iface = gr.Interface(fn=get_result, inputs="text", outputs="text")
|
38 |
+
iface.launch()
|