Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,159 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import jiwer
|
3 |
+
import pandas as pd
|
4 |
+
from typing import List, Optional
|
5 |
|
6 |
+
def calculate_wer_metrics(
|
7 |
+
hypothesis: str,
|
8 |
+
reference: str,
|
9 |
+
normalize: bool = True,
|
10 |
+
words_to_filter: Optional[List[str]] = None
|
11 |
+
) -> dict:
|
12 |
+
"""
|
13 |
+
Calculate WER metrics between hypothesis and reference texts.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
hypothesis (str): The hypothesis text
|
17 |
+
reference (str): The reference text
|
18 |
+
normalize (bool): Whether to normalize texts before comparison
|
19 |
+
words_to_filter (List[str], optional): Words to filter out before comparison
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
dict: Dictionary containing WER metrics
|
23 |
+
"""
|
24 |
+
# Create transformation pipeline
|
25 |
+
if normalize:
|
26 |
+
transformation = jiwer.Compose([
|
27 |
+
jiwer.ToLowerCase(),
|
28 |
+
jiwer.RemoveMultipleSpaces(),
|
29 |
+
jiwer.RemovePunctuation(),
|
30 |
+
jiwer.Strip()
|
31 |
+
])
|
32 |
+
|
33 |
+
# Add custom word filtering if specified
|
34 |
+
if words_to_filter:
|
35 |
+
transformation = jiwer.Compose([
|
36 |
+
transformation,
|
37 |
+
lambda x: ' '.join(word for word in x.split()
|
38 |
+
if word.lower() not in [w.lower() for w in words_to_filter])
|
39 |
+
])
|
40 |
+
else:
|
41 |
+
transformation = None
|
42 |
+
|
43 |
+
# Calculate WER measures
|
44 |
+
measures = jiwer.compute_measures(
|
45 |
+
reference=reference,
|
46 |
+
hypothesis=hypothesis,
|
47 |
+
truth_transform=transformation,
|
48 |
+
hypothesis_transform=transformation
|
49 |
+
)
|
50 |
+
|
51 |
+
return measures
|
52 |
+
|
53 |
+
def main():
|
54 |
+
st.set_page_config(
|
55 |
+
page_title="WER Evaluation Tool",
|
56 |
+
page_icon="🎯",
|
57 |
+
layout="wide"
|
58 |
+
)
|
59 |
+
|
60 |
+
st.title("Word Error Rate (WER) Evaluation Tool")
|
61 |
+
st.markdown("""
|
62 |
+
This tool helps you evaluate the Word Error Rate (WER) between a reference text and a hypothesis text.
|
63 |
+
WER is commonly used in speech recognition and machine translation evaluation.
|
64 |
+
""")
|
65 |
+
|
66 |
+
# Example button
|
67 |
+
if st.button("Load Example"):
|
68 |
+
reference = "the quick brown fox jumps over the lazy dog"
|
69 |
+
hypothesis = "the quick brown fox jumped over lazy dog"
|
70 |
+
else:
|
71 |
+
reference = ""
|
72 |
+
hypothesis = ""
|
73 |
+
|
74 |
+
# Input fields
|
75 |
+
col1, col2 = st.columns(2)
|
76 |
+
|
77 |
+
with col1:
|
78 |
+
reference = st.text_area(
|
79 |
+
"Reference Text",
|
80 |
+
value=reference,
|
81 |
+
height=150,
|
82 |
+
placeholder="Enter the reference text here..."
|
83 |
+
)
|
84 |
+
|
85 |
+
with col2:
|
86 |
+
hypothesis = st.text_area(
|
87 |
+
"Hypothesis Text",
|
88 |
+
value=hypothesis,
|
89 |
+
height=150,
|
90 |
+
placeholder="Enter the hypothesis text here..."
|
91 |
+
)
|
92 |
+
|
93 |
+
# Options
|
94 |
+
normalize = st.checkbox("Normalize text (lowercase, remove punctuation)", value=True)
|
95 |
+
|
96 |
+
words_to_filter_input = st.text_input(
|
97 |
+
"Words to filter (comma-separated)",
|
98 |
+
placeholder="e.g., um, uh, ah"
|
99 |
+
)
|
100 |
+
|
101 |
+
words_to_filter = [word.strip() for word in words_to_filter_input.split(",")] if words_to_filter_input else None
|
102 |
+
|
103 |
+
# Calculate button
|
104 |
+
if st.button("Calculate WER"):
|
105 |
+
if not reference or not hypothesis:
|
106 |
+
st.error("Please provide both reference and hypothesis texts.")
|
107 |
+
return
|
108 |
+
|
109 |
+
try:
|
110 |
+
measures = calculate_wer_metrics(
|
111 |
+
hypothesis=hypothesis,
|
112 |
+
reference=reference,
|
113 |
+
normalize=normalize,
|
114 |
+
words_to_filter=words_to_filter
|
115 |
+
)
|
116 |
+
|
117 |
+
# Display results
|
118 |
+
col1, col2 = st.columns(2)
|
119 |
+
|
120 |
+
with col1:
|
121 |
+
st.subheader("Main Metrics")
|
122 |
+
metrics_df = pd.DataFrame({
|
123 |
+
'Metric': ['WER', 'MER', 'WIL', 'WIP'],
|
124 |
+
'Value': [
|
125 |
+
f"{measures['wer']:.3f}",
|
126 |
+
f"{measures['mer']:.3f}",
|
127 |
+
f"{measures['wil']:.3f}",
|
128 |
+
f"{measures['wip']:.3f}"
|
129 |
+
]
|
130 |
+
})
|
131 |
+
st.table(metrics_df)
|
132 |
+
|
133 |
+
with col2:
|
134 |
+
st.subheader("Error Analysis")
|
135 |
+
error_df = pd.DataFrame({
|
136 |
+
'Metric': ['Substitutions', 'Deletions', 'Insertions', 'Hits'],
|
137 |
+
'Count': [
|
138 |
+
measures['substitutions'],
|
139 |
+
measures['deletions'],
|
140 |
+
measures['insertions'],
|
141 |
+
measures['hits']
|
142 |
+
]
|
143 |
+
})
|
144 |
+
st.table(error_df)
|
145 |
+
|
146 |
+
# Add explanations
|
147 |
+
st.markdown("""
|
148 |
+
### Metrics Explanation:
|
149 |
+
- **WER (Word Error Rate)**: The percentage of words that were incorrectly predicted
|
150 |
+
- **MER (Match Error Rate)**: The percentage of words that were incorrectly matched
|
151 |
+
- **WIL (Word Information Lost)**: The percentage of word information that was lost
|
152 |
+
- **WIP (Word Information Preserved)**: The percentage of word information that was preserved
|
153 |
+
""")
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
st.error(f"Error calculating WER: {str(e)}")
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
main()
|