File size: 15,343 Bytes
ac47a36
 
 
 
 
 
 
 
 
9ab860d
ac47a36
9ab860d
ac47a36
 
 
 
 
 
9ab860d
 
 
 
 
ac47a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab860d
ac47a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab860d
 
 
 
 
 
ac47a36
 
 
 
 
 
 
 
 
9ab860d
 
 
ac47a36
 
 
 
 
9ab860d
 
 
ac47a36
 
 
 
 
 
 
 
 
 
 
9ab860d
 
ac47a36
 
 
 
 
9ab860d
 
 
ac47a36
 
 
 
 
 
 
 
 
 
 
9ab860d
 
 
 
ac47a36
 
 
 
 
 
 
9ab860d
 
 
ac47a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab860d
ac47a36
9ab860d
ac47a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab860d
ac47a36
 
 
 
 
9ab860d
 
 
ac47a36
 
 
9ab860d
 
ac47a36
 
 
9ab860d
 
ac47a36
 
 
 
9ab860d
ac47a36
9ab860d
 
ac47a36
 
 
 
 
 
 
9ab860d
ac47a36
9ab860d
 
ac47a36
 
 
 
 
 
 
 
 
 
 
9ab860d
 
ac47a36
 
 
 
9ab860d
 
ac47a36
9ab860d
 
 
ac47a36
 
 
9ab860d
 
ac47a36
9ab860d
ac47a36
 
9ab860d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac47a36
 
9ab860d
 
 
 
 
 
ac47a36
 
 
 
 
 
 
9ab860d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator

import gradio as gr
from gradio import ChatMessage

# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)

from octotools.models.initializer import Initializer
from octotools.models.planner import Planner
from octotools.models.memory import Memory
from octotools.models.executor import Executor
from octotools.models.utils import make_json_serializable


class Solver:
    def __init__(
        self,
        planner,
        memory,
        executor,
        task: str,
        task_description: str,
        output_types: str = "base,final,direct",
        index: int = 0,
        verbose: bool = True,
        max_steps: int = 10,
        max_time: int = 60,
        output_json_dir: str = "results",
        root_cache_dir: str = "cache"
    ):
        self.planner = planner
        self.memory = memory
        self.executor = executor
        self.task = task
        self.task_description = task_description
        self.index = index
        self.verbose = verbose
        self.max_steps = max_steps
        self.max_time = max_time
        self.output_json_dir = output_json_dir
        self.root_cache_dir = root_cache_dir

        self.output_types = output_types.lower().split(',')
        assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."


    def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
        """
        Streams intermediate thoughts and final responses for the problem-solving process based on user input.
        
        Args:
            user_query (str): The text query input from the user.
            user_image (Image.Image): The uploaded image from the user (PIL Image object).
            messages (list): A list of ChatMessage objects to store the streamed responses.
        """

        if user_image:
            # # Convert PIL Image to bytes (for processing)
            # img_bytes_io = io.BytesIO()
            # user_image.save(img_bytes_io, format="PNG")  # Convert image to PNG bytes
            # img_bytes = img_bytes_io.getvalue()  # Get bytes
            
            # Use image paths instead of bytes,
            os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
            img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
            user_image.save(img_path)
        else:
            img_path = None

        # Set query cache
        _cache_dir = os.path.join(self.root_cache_dir)
        self.executor.set_query_cache_dir(_cache_dir)
        
        # Step 1: Display the received inputs
        if user_image:
            messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
        else:
            messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
        yield messages

        # # Step 2: Add "thinking" status while processing
        # messages.append(ChatMessage(
        #     role="assistant",
        #     content="",
        #     metadata={"title": "⏳ Thinking: Processing input..."}
        # ))

        # Step 3: Initialize problem-solving state
        start_time = time.time()
        step_count = 0
        json_data = {"query": user_query, "image": "Image received as bytes"}

        # Step 4: Query Analysis
        query_analysis = self.planner.analyze_query(user_query, img_path)
        json_data["query_analysis"] = query_analysis
        messages.append(ChatMessage(role="assistant", 
                                    content=f"{query_analysis}", 
                                    metadata={"title": "πŸ” Query Analysis"}))
        yield messages

        # Step 5: Execution loop (similar to your step-by-step solver)
        while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
            step_count += 1
            # messages.append(ChatMessage(role="assistant", 
            #                             content=f"Generating next step...",
            #                             metadata={"title": f"πŸ”„ Step {step_count}"}))
            yield messages

            # Generate the next step
            next_step = self.planner.generate_next_step(
                user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
            )
            context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)

            # Display the step information
            messages.append(ChatMessage(
                role="assistant",
                content=f"- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}",
                metadata={"title": f"πŸ“Œ Step {step_count}: {tool_name}"}
            ))
            yield messages

            # Handle tool execution or errors
            if tool_name not in self.planner.available_tools:
                messages.append(ChatMessage(
                    role="assistant", 
                    content=f"⚠️ Error: Tool '{tool_name}' is not available."))
                yield messages
                continue

            # Execute the tool command
            tool_command = self.executor.generate_tool_command(
                user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
            )
            explanation, command = self.executor.extract_explanation_and_command(tool_command)
            result = self.executor.execute_tool_command(tool_name, command)
            result = make_json_serializable(result)

            messages.append(ChatMessage(
                role="assistant", 
                content=f"{json.dumps(result, indent=4)}",
                metadata={"title": f"βœ… Step {step_count} Result: {tool_name}"}))
            yield messages

            # Step 6: Memory update and stopping condition
            self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
            stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
            conclusion = self.planner.extract_conclusion(stop_verification)

            messages.append(ChatMessage(
                role="assistant", 
                content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
            yield messages

            if conclusion == 'STOP':
                break

        # Step 7: Generate Final Output (if needed)
        if 'final' in self.output_types:
            final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
            messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
            yield messages

        if 'direct' in self.output_types:
            direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
            messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
            yield messages

        # Step 8: Completion Message
        messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
        yield messages
            

def parse_arguments():
    parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
    parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
    parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
    parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
    parser.add_argument("--task", default="minitoolbench", help="Task to run.")
    parser.add_argument("--task_description", default="", help="Task description.")
    parser.add_argument(
        "--output_types",
        default="base,final,direct",
        help="Comma-separated list of required outputs (base,final,direct)"
    )
    parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
    parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
    parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
    parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
    return parser.parse_args()


def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None):
    """
    Wrapper function to connect the solver to Gradio.
    Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
    """

    if api_key is None:
        return [["assistant", "⚠️ Error: OpenAI API Key is required."]]
    
    # Initialize Tools
    enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []

    # Hack enabled_tools
    enabled_tools = ["Generalist_Solution_Generator_Tool"]
    # Instantiate Initializer
    initializer = Initializer(
        enabled_tools=enabled_tools,
        model_string=llm_model_engine,
        api_key=api_key
    )

    # Instantiate Planner
    planner = Planner(
        llm_engine_name=llm_model_engine,
        toolbox_metadata=initializer.toolbox_metadata,
        available_tools=initializer.available_tools,
        api_key=api_key
    )

    # Instantiate Memory
    memory = Memory()

    # Instantiate Executor
    executor = Executor(
        llm_engine_name=llm_model_engine,
        root_cache_dir=args.root_cache_dir,
        enable_signal=False,
        api_key=api_key
    )

    # Instantiate Solver
    solver = Solver(
        planner=planner,
        memory=memory,
        executor=executor,
        task=args.task,
        task_description=args.task_description,
        output_types=args.output_types,  # Add new parameter
        verbose=args.verbose,
        max_steps=max_steps,
        max_time=max_time,
        output_json_dir=args.output_json_dir,
        root_cache_dir=args.root_cache_dir
    )

    if solver is None:
        return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]

    messages = []  # Initialize message list
    for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
        yield [msg for msg in message_batch]  # Ensure correct format for Gradio Chatbot



def main(args):
    #################### Gradio Interface ####################
    with gr.Blocks() as demo:
        gr.Markdown("# 🧠 The OctoTools Agentic Solver")  # Title

        with gr.Row():
            with gr.Column(scale=2):
                api_key = gr.Textbox(show_label=False, placeholder="Your API key will not be stored in any way.", type="password", container=False)
                user_image = gr.Image(type="pil", label="Upload an image")  # Accepts multiple formats
                
                with gr.Row():
                    with gr.Column(scale=8):
                        user_query = gr.Textbox(show_label=False, placeholder="Type your question here...", container=False)
                    with gr.Column(scale=1):
                        run_button = gr.Button("Run")  # Run button

                max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
                max_time = gr.Slider(value=150, minimum=60, maximum=300, step=30, label="Max Time (seconds)")
                llm_model_engine = gr.Dropdown(
                    choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
                             "gpt-4o-mini", "gpt-4o-mini-2024-07-18"], 
                    value="gpt-4o", 
                    label="LLM Model"
                )
                enabled_tools = gr.CheckboxGroup(
                    choices=all_tools,
                    value=all_tools,
                    label="Enabled Tools"
                )
                
            with gr.Column(scale=2):
                api_key = gr.Textbox(show_label=False, placeholder="Your API key will not be stored in any way.", type="password", container=False)
                user_image = gr.Image(type="pil", label="Upload an image")  # Accepts multiple formats
                
                with gr.Row():
                    with gr.Column(scale=8):
                        user_query = gr.Textbox(show_label=False, placeholder="Type your question here...", container=False)
                    with gr.Column(scale=1):
                        run_button = gr.Button("Run")  # Run button

                max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
                max_time = gr.Slider(value=150, minimum=60, maximum=300, step=30, label="Max Time (seconds)")
                llm_model_engine = gr.Dropdown(
                    choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
                             "gpt-4o-mini", "gpt-4o-mini-2024-07-18"], 
                    value="gpt-4o", 
                    label="LLM Model"
                )
                enabled_tools = gr.CheckboxGroup(
                    choices=all_tools,
                    value=all_tools,
                    label="Enabled Tools"
                )


            with gr.Column(scale=2):
                chatbot_output = gr.Chatbot(type="messages", label="Problem-Solving Output")
                # chatbot_output.like(lambda x: print(f"User liked: {x}"))

                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
                    clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=False)

        # Link button click to function
        run_button.click(
            fn=solve_problem_gradio, 
            inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools], 
            outputs=chatbot_output
        )
    #################### Gradio Interface ####################

    # Launch the Gradio app
    demo.launch()


if __name__ == "__main__":
    args = parse_arguments()

    # Manually set enabled tools
    # args.enabled_tools = "Generalist_Solution_Generator_Tool"

    # All tools
    all_tools = [
        "Generalist_Solution_Generator_Tool",

        "Image_Captioner_Tool",
        "Object_Detector_Tool",
        "Text_Detector_Tool",
        "Relevant_Patch_Zoomer_Tool",

        "Python_Code_Generator_Tool",

        "ArXiv_Paper_Searcher_Tool",
        "Google_Search_Tool",
        "Nature_News_Fetcher_Tool",
        "Pubmed_Search_Tool",
        "URL_Text_Extractor_Tool",
        "Wikipedia_Knowledge_Searcher_Tool"
    ]
    args.enabled_tools = ",".join(all_tools)

    main(args)