File size: 10,805 Bytes
d2beadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
try:
    from openai import OpenAI
except ImportError:
    raise ImportError("If you'd like to use OpenAI models, please install the openai package by running `pip install openai`, and add 'OPENAI_API_KEY' to your environment variables.")

import os
import json
import base64
import platformdirs
from tenacity import (
    retry,
    stop_after_attempt,
    wait_random_exponential,
)
from typing import List, Union

from .base import EngineLM, CachedEngine

import openai

from dotenv import load_dotenv
load_dotenv()

# Define global constant for structured models
# https://platform.openai.com/docs/guides/structured-outputs
# https://cookbook.openai.com/examples/structured_outputs_intro
from pydantic import BaseModel

class DefaultFormat(BaseModel):
    response: str

# Define global constant for structured models
OPENAI_STRUCTURED_MODELS = ['gpt-4o', 'gpt-4o-2024-08-06','gpt-4o-mini',  'gpt-4o-mini-2024-07-18']


class ChatOpenAI(EngineLM, CachedEngine):
    DEFAULT_SYSTEM_PROMPT = "You are a helpful, creative, and smart assistant."

    def __init__(
        self,
        model_string="gpt-4o-mini-2024-07-18",
        system_prompt=DEFAULT_SYSTEM_PROMPT,
        is_multimodal: bool=False,
        # enable_cache: bool=True,
        enable_cache: bool=False, # NOTE: disable cache for now
        **kwargs):
        """
        :param model_string:
        :param system_prompt:
        :param is_multimodal:
        """
        if enable_cache:
            root = platformdirs.user_cache_dir("opentools")
            cache_path = os.path.join(root, f"cache_openai_{model_string}.db")
            # For example, cache_path = /root/.cache/opentools/cache_openai_gpt-4o-mini.db
            # print(f"Cache path: {cache_path}")
            
            self.image_cache_dir = os.path.join(root, "image_cache")
            os.makedirs(self.image_cache_dir, exist_ok=True)

            super().__init__(cache_path=cache_path)

        self.system_prompt = system_prompt
        if os.getenv("OPENAI_API_KEY") is None:
            raise ValueError("Please set the OPENAI_API_KEY environment variable if you'd like to use OpenAI models.")
        
        self.client = OpenAI(
            api_key=os.getenv("OPENAI_API_KEY"),
        )
        self.model_string = model_string
        self.is_multimodal = is_multimodal
        self.enable_cache = enable_cache

        if enable_cache:
            print(f"!! Cache enabled for model: {self.model_string}")
        else:
            print(f"!! Cache disabled for model: {self.model_string}")

    @retry(wait=wait_random_exponential(min=1, max=5), stop=stop_after_attempt(5))
    def generate(self, content: Union[str, List[Union[str, bytes]]], system_prompt=None, **kwargs):
        try:
            # Print retry attempt information
            attempt_number = self.generate.retry.statistics.get('attempt_number', 0) + 1
            if attempt_number > 1:
                print(f"Attempt {attempt_number} of 5")

            if isinstance(content, str):
                return self._generate_text(content, system_prompt=system_prompt, **kwargs)
            
            elif isinstance(content, list):
                if (not self.is_multimodal):
                    raise NotImplementedError("Multimodal generation is only supported for GPT-4 models.")
                
                return self._generate_multimodal(content, system_prompt=system_prompt, **kwargs)

        except openai.LengthFinishReasonError as e:
            print(f"Token limit exceeded: {str(e)}")
            print(f"Tokens used - Completion: {e.completion.usage.completion_tokens}, Prompt: {e.completion.usage.prompt_tokens}, Total: {e.completion.usage.total_tokens}")
            return {
                "error": "token_limit_exceeded",
                "message": str(e),
                "details": {
                    "completion_tokens": e.completion.usage.completion_tokens,
                    "prompt_tokens": e.completion.usage.prompt_tokens,
                    "total_tokens": e.completion.usage.total_tokens
                }
            }
        except openai.RateLimitError as e:
            print(f"Rate limit error encountered: {str(e)}")
            return {
                "error": "rate_limit",
                "message": str(e),
                "details": getattr(e, 'args', None)
            }
        except Exception as e:
            print(f"Error in generate method: {str(e)}")
            print(f"Error type: {type(e).__name__}")
            print(f"Error details: {e.args}")
            return {
                "error": type(e).__name__,
                "message": str(e),
                "details": getattr(e, 'args', None)
            }
        
    def _generate_text(
        self, prompt, system_prompt=None, temperature=0, max_tokens=4000, top_p=0.99, response_format=None
    ):

        sys_prompt_arg = system_prompt if system_prompt else self.system_prompt

        if self.enable_cache:
            cache_key = sys_prompt_arg + prompt
            cache_or_none = self._check_cache(cache_key)
            if cache_or_none is not None:
                return cache_or_none

        if self.model_string in ['o1', 'o1-mini']: # only supports base response currently
            # print(f"Using structured model: {self.model_string}")
            response = self.client.beta.chat.completions.parse(
                model=self.model_string,
                messages=[
                    {"role": "user", "content": prompt},
                ],
                max_completion_tokens=max_tokens
            )
            if response.choices[0].finishreason == "length":
                response = "Token limit exceeded"
            else:
                response = response.choices[0].message.parsed
        elif self.model_string in OPENAI_STRUCTURED_MODELS and response_format is not None:
            # print(f"Using structured model: {self.model_string}")
            response = self.client.beta.chat.completions.parse(
                model=self.model_string,
                messages=[
                    {"role": "system", "content": sys_prompt_arg},
                    {"role": "user", "content": prompt},
                ],
                frequency_penalty=0,
                presence_penalty=0,
                stop=None,
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
                response_format=response_format
            )
            response = response.choices[0].message.parsed
        else:
            # print(f"Using non-structured model: {self.model_string}")
            response = self.client.chat.completions.create(
                model=self.model_string,
                messages=[
                    {"role": "system", "content": sys_prompt_arg},
                    {"role": "user", "content": prompt},
                ],
                frequency_penalty=0,
                presence_penalty=0,
                stop=None,
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
            )
            response = response.choices[0].message.content

        if self.enable_cache:
            self._save_cache(cache_key, response)
        return response

    def __call__(self, prompt, **kwargs):
        return self.generate(prompt, **kwargs)

    def _format_content(self, content: List[Union[str, bytes]]) -> List[dict]:
        formatted_content = []
        for item in content:
            if isinstance(item, bytes):
                base64_image = base64.b64encode(item).decode('utf-8')
                formatted_content.append({
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"
                    }
                })
            elif isinstance(item, str):
                formatted_content.append({
                    "type": "text",
                    "text": item
                })
            else:
                raise ValueError(f"Unsupported input type: {type(item)}")
        return formatted_content

    def _generate_multimodal(
        self, content: List[Union[str, bytes]], system_prompt=None, temperature=0, max_tokens=4000, top_p=0.99, response_format=None
    ):
        sys_prompt_arg = system_prompt if system_prompt else self.system_prompt
        formatted_content = self._format_content(content)

        if self.enable_cache:
            cache_key = sys_prompt_arg + json.dumps(formatted_content)
            cache_or_none = self._check_cache(cache_key)
            if cache_or_none is not None:
                # print(f"Cache hit for prompt: {cache_key[:200]}")
                return cache_or_none

        if self.model_string in ['o1', 'o1-mini']: # only supports base response currently
            # print(f"Using structured model: {self.model_string}")
            print(f'Max tokens: {max_tokens}')
            response = self.client.chat.completions.create(
                model=self.model_string,
                messages=[
                    {"role": "user", "content": formatted_content},
                ],
                max_completion_tokens=max_tokens
            )
            if response.choices[0].finish_reason == "length":
                response_text = "Token limit exceeded"
            else:
                response_text = response.choices[0].message.content
        elif self.model_string in OPENAI_STRUCTURED_MODELS and response_format is not None:
            # print(f"Using structured model: {self.model_string}")
            response = self.client.beta.chat.completions.parse(
                model=self.model_string,
                messages=[
                    {"role": "system", "content": sys_prompt_arg},
                    {"role": "user", "content": formatted_content},
                ],
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
                response_format=response_format
            )
            response_text = response.choices[0].message.parsed
        else:
            # print(f"Using non-structured model: {self.model_string}")
            response = self.client.chat.completions.create(
                model=self.model_string,
                messages=[
                    {"role": "system", "content": sys_prompt_arg},
                    {"role": "user", "content": formatted_content},
                ],
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
            )
            response_text = response.choices[0].message.content

        if self.enable_cache:
            self._save_cache(cache_key, response_text)
        return response_text