octotools / app.py
bowenchen118's picture
Update
36e014d
raw
history blame
12.4 kB
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
# from gradio import ChatMessage
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from opentools.models.initializer import Initializer
from opentools.models.planner import Planner
from opentools.models.memory import Memory
from opentools.models.executor import Executor
from opentools.models.utils import make_json_serializable
class ChatMessage:
def __init__(self, role: str, content: str, metadata: dict = None):
self.role = role
self.content = content
self.metadata = metadata or {}
class Solver:
def __init__(
self,
planner,
memory,
executor,
task: str,
task_description: str,
output_types: str = "base,final,direct",
index: int = 0,
verbose: bool = True,
max_steps: int = 10,
max_time: int = 60,
output_json_dir: str = "results",
root_cache_dir: str = "cache"
):
self.planner = planner
self.memory = memory
self.executor = executor
self.task = task
self.task_description = task_description
self.index = index
self.verbose = verbose
self.max_steps = max_steps
self.max_time = max_time
self.output_json_dir = output_json_dir
self.root_cache_dir = root_cache_dir
self.output_types = output_types.lower().split(',')
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# self.benchmark_data = self.load_benchmark_data()
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
Args:
user_query (str): The text query input from the user.
user_image (Image.Image): The uploaded image from the user (PIL Image object).
messages (list): A list of ChatMessage objects to store the streamed responses.
"""
if user_image:
# # Convert PIL Image to bytes (for processing)
# img_bytes_io = io.BytesIO()
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# img_bytes = img_bytes_io.getvalue() # Get bytes
# Use image paths instead of bytes,
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
user_image.save(img_path)
else:
img_path = None
# Set query cache
_cache_dir = os.path.join(self.root_cache_dir)
self.executor.set_query_cache_dir(_cache_dir)
# Step 1: Display the received inputs
import pdb; pdb.set_trace()
if user_image:
messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
else:
messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
yield messages
# Step 2: Add "thinking" status while processing
messages.append(ChatMessage(
role="assistant",
content="",
metadata={"title": "⏳ Thinking: Processing input..."}
))
# Step 3: Initialize problem-solving state
start_time = time.time()
step_count = 0
json_data = {"query": user_query, "image": "Image received as bytes"}
# Step 4: Query Analysis
query_analysis = self.planner.analyze_query(user_query, img_path)
json_data["query_analysis"] = query_analysis
messages.append(ChatMessage(role="assistant", content=f"πŸ” Query Analysis:\n{query_analysis}"))
yield messages
# Step 5: Execution loop (similar to your step-by-step solver)
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
step_count += 1
messages.append(ChatMessage(role="assistant", content=f"πŸ”„ Step {step_count}: Generating next step..."))
yield messages
# Generate the next step
next_step = self.planner.generate_next_step(
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
)
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# Display the step information
messages.append(ChatMessage(
role="assistant",
content=f"πŸ“Œ Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
))
yield messages
# Handle tool execution or errors
if tool_name not in self.planner.available_tools:
messages.append(ChatMessage(role="assistant", content=f"⚠️ Error: Tool '{tool_name}' is not available."))
yield messages
continue
# Execute the tool command
tool_command = self.executor.generate_tool_command(
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
)
explanation, command = self.executor.extract_explanation_and_command(tool_command)
result = self.executor.execute_tool_command(tool_name, command)
result = make_json_serializable(result)
messages.append(ChatMessage(role="assistant", content=f"βœ… Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
yield messages
# Step 6: Memory update and stopping condition
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
conclusion = self.planner.extract_conclusion(stop_verification)
messages.append(ChatMessage(role="assistant", content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
yield messages
if conclusion == 'STOP':
break
# Step 7: Generate Final Output (if needed)
if 'final' in self.output_types:
final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
yield messages
if 'direct' in self.output_types:
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
yield messages
# Step 8: Completion Message
messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
yield messages
def parse_arguments():
parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
parser.add_argument("--task_description", default="", help="Task description.")
parser.add_argument(
"--output_types",
default="base,final,direct",
help="Comma-separated list of required outputs (base,final,direct)"
)
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
return parser.parse_args()
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None):
"""
Wrapper function to connect the solver to Gradio.
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
"""
if api_key is None:
return [["assistant", "⚠️ Error: API Key is required."]]
# Initialize Tools
enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# Instantiate Initializer
initializer = Initializer(
enabled_tools=enabled_tools,
model_string=args.llm_engine_name,
api_key=api_key
)
# Instantiate Planner
planner = Planner(
llm_engine_name=args.llm_engine_name,
toolbox_metadata=initializer.toolbox_metadata,
available_tools=initializer.available_tools,
api_key=api_key
)
# Instantiate Memory
memory = Memory()
# Instantiate Executor
executor = Executor(
llm_engine_name=args.llm_engine_name,
root_cache_dir=args.root_cache_dir,
enable_signal=False,
api_key=api_key
)
# Instantiate Solver
solver = Solver(
planner=planner,
memory=memory,
executor=executor,
task=args.task,
task_description=args.task_description,
output_types=args.output_types, # Add new parameter
verbose=args.verbose,
max_steps=max_steps,
max_time=max_time,
output_json_dir=args.output_json_dir,
root_cache_dir=args.root_cache_dir
)
if solver is None:
return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
messages = [] # Initialize message list
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
def main(args):
# ========== Gradio Interface ==========
with gr.Blocks() as demo:
gr.Markdown("# 🧠 OctoTools AI Solver") # Title
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(show_label=False, placeholder="Your API key will not be stored in any way.", type="password", container=False)
user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1)
max_time = gr.Slider(value=180, minimum=60, maximum=300, step=20)
with gr.Column(scale=3):
chatbot_output = gr.Chatbot(label="Problem-Solving Output", show_copy_button=True)
chatbot_output.like(lambda x: print(f"User liked: {x}"))
with gr.Row():
with gr.Column(scale=8):
user_query = gr.Textbox(show_label=False, placeholder="Type your question here...", container=False)
with gr.Column(scale=1):
run_button = gr.Button("Run") # Run button
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=False)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=False)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=False)
# Link button click to function
run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image, max_steps, max_time, api_key], outputs=chatbot_output)
# Launch the Gradio app
demo.launch()
if __name__ == "__main__":
args = parse_arguments()
main(args)