octotools / app.py
bowenchen118's picture
Update
d2beadd
raw
history blame
13 kB
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from .opentools.models.initializer import Initializer
from .opentools.models.planner import Planner
from .opentools.models.memory import Memory
from .opentools.models.executor import Executor
from .opentools.models.utlis import make_json_serializable
# solver = None
# class ChatMessage:
# def __init__(self, role: str, content: str, metadata: dict = None):
# self.role = role
# self.content = content
# self.metadata = metadata or {}
# class Solver:
# def __init__(
# self,
# planner,
# memory,
# executor,
# task: str,
# task_description: str,
# output_types: str = "base,final,direct",
# index: int = 0,
# verbose: bool = True,
# max_steps: int = 10,
# max_time: int = 60,
# output_json_dir: str = "results",
# root_cache_dir: str = "cache"
# ):
# self.planner = planner
# self.memory = memory
# self.executor = executor
# self.task = task
# self.task_description = task_description
# self.index = index
# self.verbose = verbose
# self.max_steps = max_steps
# self.max_time = max_time
# self.output_json_dir = output_json_dir
# self.root_cache_dir = root_cache_dir
# self.output_types = output_types.lower().split(',')
# assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# # self.benchmark_data = self.load_benchmark_data()
# def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
# """
# Streams intermediate thoughts and final responses for the problem-solving process based on user input.
# Args:
# user_query (str): The text query input from the user.
# user_image (Image.Image): The uploaded image from the user (PIL Image object).
# messages (list): A list of ChatMessage objects to store the streamed responses.
# """
# if user_image:
# # # Convert PIL Image to bytes (for processing)
# # img_bytes_io = io.BytesIO()
# # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# # img_bytes = img_bytes_io.getvalue() # Get bytes
# # Use image paths instead of bytes,
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
# user_image.save(img_path)
# else:
# img_path = None
# # Set query cache
# _cache_dir = os.path.join(self.root_cache_dir)
# self.executor.set_query_cache_dir(_cache_dir)
# # Step 1: Display the received inputs
# if user_image:
# messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
# else:
# messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
# yield messages
# # Step 2: Add "thinking" status while processing
# messages.append(ChatMessage(
# role="assistant",
# content="",
# metadata={"title": "⏳ Thinking: Processing input..."}
# ))
# # Step 3: Initialize problem-solving state
# start_time = time.time()
# step_count = 0
# json_data = {"query": user_query, "image": "Image received as bytes"}
# # Step 4: Query Analysis
# import pdb; pdb.set_trace()
# query_analysis = self.planner.analyze_query(user_query, img_path)
# json_data["query_analysis"] = query_analysis
# messages.append(ChatMessage(role="assistant", content=f"πŸ” Query Analysis:\n{query_analysis}"))
# yield messages
# # Step 5: Execution loop (similar to your step-by-step solver)
# while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
# step_count += 1
# messages.append(ChatMessage(role="assistant", content=f"πŸ”„ Step {step_count}: Generating next step..."))
# yield messages
# # Generate the next step
# next_step = self.planner.generate_next_step(
# user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
# )
# context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# # Display the step information
# messages.append(ChatMessage(
# role="assistant",
# content=f"πŸ“Œ Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
# ))
# yield messages
# # Handle tool execution or errors
# if tool_name not in self.planner.available_tools:
# messages.append(ChatMessage(role="assistant", content=f"⚠️ Error: Tool '{tool_name}' is not available."))
# yield messages
# continue
# # Execute the tool command
# tool_command = self.executor.generate_tool_command(
# user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
# )
# explanation, command = self.executor.extract_explanation_and_command(tool_command)
# result = self.executor.execute_tool_command(tool_name, command)
# result = make_json_serializable(result)
# messages.append(ChatMessage(role="assistant", content=f"βœ… Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
# yield messages
# # Step 6: Memory update and stopping condition
# self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
# stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
# conclusion = self.planner.extract_conclusion(stop_verification)
# messages.append(ChatMessage(role="assistant", content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
# yield messages
# if conclusion == 'STOP':
# break
# # Step 7: Generate Final Output (if needed)
# if 'final' in self.output_types:
# final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
# yield messages
# if 'direct' in self.output_types:
# direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
# messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
# yield messages
# # Step 8: Completion Message
# messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
# yield messages
# def parse_arguments():
# parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
# parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
# parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
# parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
# parser.add_argument("--task", default="minitoolbench", help="Task to run.")
# parser.add_argument("--task_description", default="", help="Task description.")
# parser.add_argument(
# "--output_types",
# default="base,final,direct",
# help="Comma-separated list of required outputs (base,final,direct)"
# )
# parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
# parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
# parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
# parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
# parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
# parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
# return parser.parse_args()
# def solve_problem_gradio(user_query, user_image):
# """
# Wrapper function to connect the solver to Gradio.
# Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
# """
# global solver # Ensure we're using the globally defined solver
# if solver is None:
# return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
# messages = [] # Initialize message list
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
# def main(args):
# global solver
# # Initialize Tools
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# # Instantiate Initializer
# initializer = Initializer(
# enabled_tools=enabled_tools,
# model_string=args.llm_engine_name
# )
# # Instantiate Planner
# planner = Planner(
# llm_engine_name=args.llm_engine_name,
# toolbox_metadata=initializer.toolbox_metadata,
# available_tools=initializer.available_tools
# )
# # Instantiate Memory
# memory = Memory()
# # Instantiate Executor
# executor = Executor(
# llm_engine_name=args.llm_engine_name,
# root_cache_dir=args.root_cache_dir,
# enable_signal=False
# )
# # Instantiate Solver
# solver = Solver(
# planner=planner,
# memory=memory,
# executor=executor,
# task=args.task,
# task_description=args.task_description,
# output_types=args.output_types, # Add new parameter
# verbose=args.verbose,
# max_steps=args.max_steps,
# max_time=args.max_time,
# output_json_dir=args.output_json_dir,
# root_cache_dir=args.root_cache_dir
# )
# # Test Inputs
# # user_query = "How many balls are there in the image?"
# # user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
# # # Load the image as a PIL object
# # user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
# # print("\n=== Starting Problem Solving ===\n")
# # messages = []
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # for message in message_batch:
# # print(f"{message.role}: {message.content}")
# # messages = []
# # solver.stream_solve_user_problem(user_query, user_image, messages)
# # def solve_problem_stream(user_query, user_image):
# # messages = [] # Ensure it's a list of [role, content] pairs
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# # yield message_batch # Stream messages correctly in tuple format
# # solve_problem_stream(user_query, user_image)
# # ========== Gradio Interface ==========
# with gr.Blocks() as demo:
# gr.Markdown("# 🧠 OctoTools AI Solver") # Title
# with gr.Row():
# user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
# user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
# run_button = gr.Button("Run") # Run button
# chatbot_output = gr.Chatbot(label="Problem-Solving Output")
# # Link button click to function
# run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
# # Launch the Gradio app
# demo.launch()
# if __name__ == "__main__":
# args = parse_arguments()
# main(args)