bowenchen118 commited on
Commit
2c1976e
Β·
1 Parent(s): 09f9e5c

Add application file

Browse files
Files changed (1) hide show
  1. app.py +316 -0
app.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ demo.launch()
8
+
9
+ # import os
10
+ # import sys
11
+ # import json
12
+ # import argparse
13
+ # import time
14
+ # import io
15
+ # import uuid
16
+ # from PIL import Image
17
+ # from typing import List, Dict, Any, Iterator
18
+ # import gradio as gr
19
+
20
+ # # Add the project root to the Python path
21
+ # current_dir = os.path.dirname(os.path.abspath(__file__))
22
+ # project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
23
+ # sys.path.insert(0, project_root)
24
+
25
+ # from opentools.models.initializer import Initializer
26
+ # from opentools.models.planner import Planner
27
+ # from opentools.models.memory import Memory
28
+ # from opentools.models.executor import Executor
29
+ # from opentools.models.utlis import make_json_serializable
30
+
31
+ # solver = None
32
+
33
+ # class ChatMessage:
34
+ # def __init__(self, role: str, content: str, metadata: dict = None):
35
+ # self.role = role
36
+ # self.content = content
37
+ # self.metadata = metadata or {}
38
+
39
+ # class Solver:
40
+ # def __init__(
41
+ # self,
42
+ # planner,
43
+ # memory,
44
+ # executor,
45
+ # task: str,
46
+ # task_description: str,
47
+ # output_types: str = "base,final,direct",
48
+ # index: int = 0,
49
+ # verbose: bool = True,
50
+ # max_steps: int = 10,
51
+ # max_time: int = 60,
52
+ # output_json_dir: str = "results",
53
+ # root_cache_dir: str = "cache"
54
+ # ):
55
+ # self.planner = planner
56
+ # self.memory = memory
57
+ # self.executor = executor
58
+ # self.task = task
59
+ # self.task_description = task_description
60
+ # self.index = index
61
+ # self.verbose = verbose
62
+ # self.max_steps = max_steps
63
+ # self.max_time = max_time
64
+ # self.output_json_dir = output_json_dir
65
+ # self.root_cache_dir = root_cache_dir
66
+
67
+ # self.output_types = output_types.lower().split(',')
68
+ # assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
69
+
70
+ # # self.benchmark_data = self.load_benchmark_data()
71
+
72
+
73
+
74
+ # def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
75
+ # """
76
+ # Streams intermediate thoughts and final responses for the problem-solving process based on user input.
77
+
78
+ # Args:
79
+ # user_query (str): The text query input from the user.
80
+ # user_image (Image.Image): The uploaded image from the user (PIL Image object).
81
+ # messages (list): A list of ChatMessage objects to store the streamed responses.
82
+ # """
83
+
84
+ # if user_image:
85
+ # # # Convert PIL Image to bytes (for processing)
86
+ # # img_bytes_io = io.BytesIO()
87
+ # # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
88
+ # # img_bytes = img_bytes_io.getvalue() # Get bytes
89
+
90
+ # # Use image paths instead of bytes,
91
+ # os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
92
+ # img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
93
+ # user_image.save(img_path)
94
+ # else:
95
+ # img_path = None
96
+
97
+ # # Set query cache
98
+ # _cache_dir = os.path.join(self.root_cache_dir)
99
+ # self.executor.set_query_cache_dir(_cache_dir)
100
+
101
+ # # Step 1: Display the received inputs
102
+ # if user_image:
103
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}\nπŸ–ΌοΈ Image Uploaded"))
104
+ # else:
105
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ“ Received Query: {user_query}"))
106
+ # yield messages
107
+
108
+ # # Step 2: Add "thinking" status while processing
109
+ # messages.append(ChatMessage(
110
+ # role="assistant",
111
+ # content="",
112
+ # metadata={"title": "⏳ Thinking: Processing input..."}
113
+ # ))
114
+
115
+ # # Step 3: Initialize problem-solving state
116
+ # start_time = time.time()
117
+ # step_count = 0
118
+ # json_data = {"query": user_query, "image": "Image received as bytes"}
119
+
120
+ # # Step 4: Query Analysis
121
+ # import pdb; pdb.set_trace()
122
+ # query_analysis = self.planner.analyze_query(user_query, img_path)
123
+ # json_data["query_analysis"] = query_analysis
124
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ” Query Analysis:\n{query_analysis}"))
125
+ # yield messages
126
+
127
+ # # Step 5: Execution loop (similar to your step-by-step solver)
128
+ # while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
129
+ # step_count += 1
130
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ”„ Step {step_count}: Generating next step..."))
131
+ # yield messages
132
+
133
+ # # Generate the next step
134
+ # next_step = self.planner.generate_next_step(
135
+ # user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
136
+ # )
137
+ # context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
138
+
139
+ # # Display the step information
140
+ # messages.append(ChatMessage(
141
+ # role="assistant",
142
+ # content=f"πŸ“Œ Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
143
+ # ))
144
+ # yield messages
145
+
146
+ # # Handle tool execution or errors
147
+ # if tool_name not in self.planner.available_tools:
148
+ # messages.append(ChatMessage(role="assistant", content=f"⚠️ Error: Tool '{tool_name}' is not available."))
149
+ # yield messages
150
+ # continue
151
+
152
+ # # Execute the tool command
153
+ # tool_command = self.executor.generate_tool_command(
154
+ # user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
155
+ # )
156
+ # explanation, command = self.executor.extract_explanation_and_command(tool_command)
157
+ # result = self.executor.execute_tool_command(tool_name, command)
158
+ # result = make_json_serializable(result)
159
+
160
+ # messages.append(ChatMessage(role="assistant", content=f"βœ… Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
161
+ # yield messages
162
+
163
+ # # Step 6: Memory update and stopping condition
164
+ # self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
165
+ # stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
166
+ # conclusion = self.planner.extract_conclusion(stop_verification)
167
+
168
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ›‘ Step {step_count} Conclusion: {conclusion}"))
169
+ # yield messages
170
+
171
+ # if conclusion == 'STOP':
172
+ # break
173
+
174
+ # # Step 7: Generate Final Output (if needed)
175
+ # if 'final' in self.output_types:
176
+ # final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
177
+ # messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
178
+ # yield messages
179
+
180
+ # if 'direct' in self.output_types:
181
+ # direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
182
+ # messages.append(ChatMessage(role="assistant", content=f"πŸ”Ή Direct Output:\n{direct_output}"))
183
+ # yield messages
184
+
185
+ # # Step 8: Completion Message
186
+ # messages.append(ChatMessage(role="assistant", content="βœ… Problem-solving process complete."))
187
+ # yield messages
188
+
189
+ # def parse_arguments():
190
+ # parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
191
+ # parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
192
+ # parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
193
+ # parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
194
+ # parser.add_argument("--task", default="minitoolbench", help="Task to run.")
195
+ # parser.add_argument("--task_description", default="", help="Task description.")
196
+ # parser.add_argument(
197
+ # "--output_types",
198
+ # default="base,final,direct",
199
+ # help="Comma-separated list of required outputs (base,final,direct)"
200
+ # )
201
+ # parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
202
+ # parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
203
+ # parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
204
+ # parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
205
+ # parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
206
+ # parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
207
+ # return parser.parse_args()
208
+
209
+
210
+ # def solve_problem_gradio(user_query, user_image):
211
+ # """
212
+ # Wrapper function to connect the solver to Gradio.
213
+ # Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
214
+ # """
215
+ # global solver # Ensure we're using the globally defined solver
216
+
217
+ # if solver is None:
218
+ # return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
219
+
220
+ # messages = [] # Initialize message list
221
+ # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
222
+ # yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
223
+
224
+
225
+
226
+ # def main(args):
227
+ # global solver
228
+ # # Initialize Tools
229
+ # enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
230
+
231
+
232
+ # # Instantiate Initializer
233
+ # initializer = Initializer(
234
+ # enabled_tools=enabled_tools,
235
+ # model_string=args.llm_engine_name
236
+ # )
237
+
238
+ # # Instantiate Planner
239
+ # planner = Planner(
240
+ # llm_engine_name=args.llm_engine_name,
241
+ # toolbox_metadata=initializer.toolbox_metadata,
242
+ # available_tools=initializer.available_tools
243
+ # )
244
+
245
+ # # Instantiate Memory
246
+ # memory = Memory()
247
+
248
+ # # Instantiate Executor
249
+ # executor = Executor(
250
+ # llm_engine_name=args.llm_engine_name,
251
+ # root_cache_dir=args.root_cache_dir,
252
+ # enable_signal=False
253
+ # )
254
+
255
+ # # Instantiate Solver
256
+ # solver = Solver(
257
+ # planner=planner,
258
+ # memory=memory,
259
+ # executor=executor,
260
+ # task=args.task,
261
+ # task_description=args.task_description,
262
+ # output_types=args.output_types, # Add new parameter
263
+ # verbose=args.verbose,
264
+ # max_steps=args.max_steps,
265
+ # max_time=args.max_time,
266
+ # output_json_dir=args.output_json_dir,
267
+ # root_cache_dir=args.root_cache_dir
268
+ # )
269
+
270
+ # # Test Inputs
271
+ # # user_query = "How many balls are there in the image?"
272
+ # # user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
273
+
274
+ # # # Load the image as a PIL object
275
+ # # user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
276
+
277
+ # # print("\n=== Starting Problem Solving ===\n")
278
+ # # messages = []
279
+ # # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
280
+ # # for message in message_batch:
281
+ # # print(f"{message.role}: {message.content}")
282
+
283
+ # # messages = []
284
+ # # solver.stream_solve_user_problem(user_query, user_image, messages)
285
+
286
+
287
+ # # def solve_problem_stream(user_query, user_image):
288
+ # # messages = [] # Ensure it's a list of [role, content] pairs
289
+
290
+ # # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
291
+ # # yield message_batch # Stream messages correctly in tuple format
292
+
293
+ # # solve_problem_stream(user_query, user_image)
294
+
295
+ # # ========== Gradio Interface ==========
296
+ # with gr.Blocks() as demo:
297
+ # gr.Markdown("# 🧠 OctoTools AI Solver") # Title
298
+
299
+ # with gr.Row():
300
+ # user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
301
+ # user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
302
+
303
+ # run_button = gr.Button("Run") # Run button
304
+ # chatbot_output = gr.Chatbot(label="Problem-Solving Output")
305
+
306
+ # # Link button click to function
307
+ # run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
308
+
309
+ # # Launch the Gradio app
310
+ # demo.launch()
311
+
312
+
313
+
314
+ # if __name__ == "__main__":
315
+ # args = parse_arguments()
316
+ # main(args)