Spaces:
Running
on
T4
Running
on
T4
Commit
Β·
2c1976e
1
Parent(s):
09f9e5c
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def greet(name):
|
4 |
+
return "Hello " + name + "!!"
|
5 |
+
|
6 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
demo.launch()
|
8 |
+
|
9 |
+
# import os
|
10 |
+
# import sys
|
11 |
+
# import json
|
12 |
+
# import argparse
|
13 |
+
# import time
|
14 |
+
# import io
|
15 |
+
# import uuid
|
16 |
+
# from PIL import Image
|
17 |
+
# from typing import List, Dict, Any, Iterator
|
18 |
+
# import gradio as gr
|
19 |
+
|
20 |
+
# # Add the project root to the Python path
|
21 |
+
# current_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
# project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
|
23 |
+
# sys.path.insert(0, project_root)
|
24 |
+
|
25 |
+
# from opentools.models.initializer import Initializer
|
26 |
+
# from opentools.models.planner import Planner
|
27 |
+
# from opentools.models.memory import Memory
|
28 |
+
# from opentools.models.executor import Executor
|
29 |
+
# from opentools.models.utlis import make_json_serializable
|
30 |
+
|
31 |
+
# solver = None
|
32 |
+
|
33 |
+
# class ChatMessage:
|
34 |
+
# def __init__(self, role: str, content: str, metadata: dict = None):
|
35 |
+
# self.role = role
|
36 |
+
# self.content = content
|
37 |
+
# self.metadata = metadata or {}
|
38 |
+
|
39 |
+
# class Solver:
|
40 |
+
# def __init__(
|
41 |
+
# self,
|
42 |
+
# planner,
|
43 |
+
# memory,
|
44 |
+
# executor,
|
45 |
+
# task: str,
|
46 |
+
# task_description: str,
|
47 |
+
# output_types: str = "base,final,direct",
|
48 |
+
# index: int = 0,
|
49 |
+
# verbose: bool = True,
|
50 |
+
# max_steps: int = 10,
|
51 |
+
# max_time: int = 60,
|
52 |
+
# output_json_dir: str = "results",
|
53 |
+
# root_cache_dir: str = "cache"
|
54 |
+
# ):
|
55 |
+
# self.planner = planner
|
56 |
+
# self.memory = memory
|
57 |
+
# self.executor = executor
|
58 |
+
# self.task = task
|
59 |
+
# self.task_description = task_description
|
60 |
+
# self.index = index
|
61 |
+
# self.verbose = verbose
|
62 |
+
# self.max_steps = max_steps
|
63 |
+
# self.max_time = max_time
|
64 |
+
# self.output_json_dir = output_json_dir
|
65 |
+
# self.root_cache_dir = root_cache_dir
|
66 |
+
|
67 |
+
# self.output_types = output_types.lower().split(',')
|
68 |
+
# assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
|
69 |
+
|
70 |
+
# # self.benchmark_data = self.load_benchmark_data()
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
|
75 |
+
# """
|
76 |
+
# Streams intermediate thoughts and final responses for the problem-solving process based on user input.
|
77 |
+
|
78 |
+
# Args:
|
79 |
+
# user_query (str): The text query input from the user.
|
80 |
+
# user_image (Image.Image): The uploaded image from the user (PIL Image object).
|
81 |
+
# messages (list): A list of ChatMessage objects to store the streamed responses.
|
82 |
+
# """
|
83 |
+
|
84 |
+
# if user_image:
|
85 |
+
# # # Convert PIL Image to bytes (for processing)
|
86 |
+
# # img_bytes_io = io.BytesIO()
|
87 |
+
# # user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
|
88 |
+
# # img_bytes = img_bytes_io.getvalue() # Get bytes
|
89 |
+
|
90 |
+
# # Use image paths instead of bytes,
|
91 |
+
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
|
92 |
+
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
|
93 |
+
# user_image.save(img_path)
|
94 |
+
# else:
|
95 |
+
# img_path = None
|
96 |
+
|
97 |
+
# # Set query cache
|
98 |
+
# _cache_dir = os.path.join(self.root_cache_dir)
|
99 |
+
# self.executor.set_query_cache_dir(_cache_dir)
|
100 |
+
|
101 |
+
# # Step 1: Display the received inputs
|
102 |
+
# if user_image:
|
103 |
+
# messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}\nπΌοΈ Image Uploaded"))
|
104 |
+
# else:
|
105 |
+
# messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}"))
|
106 |
+
# yield messages
|
107 |
+
|
108 |
+
# # Step 2: Add "thinking" status while processing
|
109 |
+
# messages.append(ChatMessage(
|
110 |
+
# role="assistant",
|
111 |
+
# content="",
|
112 |
+
# metadata={"title": "β³ Thinking: Processing input..."}
|
113 |
+
# ))
|
114 |
+
|
115 |
+
# # Step 3: Initialize problem-solving state
|
116 |
+
# start_time = time.time()
|
117 |
+
# step_count = 0
|
118 |
+
# json_data = {"query": user_query, "image": "Image received as bytes"}
|
119 |
+
|
120 |
+
# # Step 4: Query Analysis
|
121 |
+
# import pdb; pdb.set_trace()
|
122 |
+
# query_analysis = self.planner.analyze_query(user_query, img_path)
|
123 |
+
# json_data["query_analysis"] = query_analysis
|
124 |
+
# messages.append(ChatMessage(role="assistant", content=f"π Query Analysis:\n{query_analysis}"))
|
125 |
+
# yield messages
|
126 |
+
|
127 |
+
# # Step 5: Execution loop (similar to your step-by-step solver)
|
128 |
+
# while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
|
129 |
+
# step_count += 1
|
130 |
+
# messages.append(ChatMessage(role="assistant", content=f"π Step {step_count}: Generating next step..."))
|
131 |
+
# yield messages
|
132 |
+
|
133 |
+
# # Generate the next step
|
134 |
+
# next_step = self.planner.generate_next_step(
|
135 |
+
# user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
|
136 |
+
# )
|
137 |
+
# context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
|
138 |
+
|
139 |
+
# # Display the step information
|
140 |
+
# messages.append(ChatMessage(
|
141 |
+
# role="assistant",
|
142 |
+
# content=f"π Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
|
143 |
+
# ))
|
144 |
+
# yield messages
|
145 |
+
|
146 |
+
# # Handle tool execution or errors
|
147 |
+
# if tool_name not in self.planner.available_tools:
|
148 |
+
# messages.append(ChatMessage(role="assistant", content=f"β οΈ Error: Tool '{tool_name}' is not available."))
|
149 |
+
# yield messages
|
150 |
+
# continue
|
151 |
+
|
152 |
+
# # Execute the tool command
|
153 |
+
# tool_command = self.executor.generate_tool_command(
|
154 |
+
# user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
|
155 |
+
# )
|
156 |
+
# explanation, command = self.executor.extract_explanation_and_command(tool_command)
|
157 |
+
# result = self.executor.execute_tool_command(tool_name, command)
|
158 |
+
# result = make_json_serializable(result)
|
159 |
+
|
160 |
+
# messages.append(ChatMessage(role="assistant", content=f"β
Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
|
161 |
+
# yield messages
|
162 |
+
|
163 |
+
# # Step 6: Memory update and stopping condition
|
164 |
+
# self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
|
165 |
+
# stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
|
166 |
+
# conclusion = self.planner.extract_conclusion(stop_verification)
|
167 |
+
|
168 |
+
# messages.append(ChatMessage(role="assistant", content=f"π Step {step_count} Conclusion: {conclusion}"))
|
169 |
+
# yield messages
|
170 |
+
|
171 |
+
# if conclusion == 'STOP':
|
172 |
+
# break
|
173 |
+
|
174 |
+
# # Step 7: Generate Final Output (if needed)
|
175 |
+
# if 'final' in self.output_types:
|
176 |
+
# final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
|
177 |
+
# messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}"))
|
178 |
+
# yield messages
|
179 |
+
|
180 |
+
# if 'direct' in self.output_types:
|
181 |
+
# direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
|
182 |
+
# messages.append(ChatMessage(role="assistant", content=f"πΉ Direct Output:\n{direct_output}"))
|
183 |
+
# yield messages
|
184 |
+
|
185 |
+
# # Step 8: Completion Message
|
186 |
+
# messages.append(ChatMessage(role="assistant", content="β
Problem-solving process complete."))
|
187 |
+
# yield messages
|
188 |
+
|
189 |
+
# def parse_arguments():
|
190 |
+
# parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
|
191 |
+
# parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
|
192 |
+
# parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
|
193 |
+
# parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
|
194 |
+
# parser.add_argument("--task", default="minitoolbench", help="Task to run.")
|
195 |
+
# parser.add_argument("--task_description", default="", help="Task description.")
|
196 |
+
# parser.add_argument(
|
197 |
+
# "--output_types",
|
198 |
+
# default="base,final,direct",
|
199 |
+
# help="Comma-separated list of required outputs (base,final,direct)"
|
200 |
+
# )
|
201 |
+
# parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
|
202 |
+
# parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
|
203 |
+
# parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
|
204 |
+
# parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
|
205 |
+
# parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
|
206 |
+
# parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
|
207 |
+
# return parser.parse_args()
|
208 |
+
|
209 |
+
|
210 |
+
# def solve_problem_gradio(user_query, user_image):
|
211 |
+
# """
|
212 |
+
# Wrapper function to connect the solver to Gradio.
|
213 |
+
# Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
|
214 |
+
# """
|
215 |
+
# global solver # Ensure we're using the globally defined solver
|
216 |
+
|
217 |
+
# if solver is None:
|
218 |
+
# return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]]
|
219 |
+
|
220 |
+
# messages = [] # Initialize message list
|
221 |
+
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
|
222 |
+
# yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
# def main(args):
|
227 |
+
# global solver
|
228 |
+
# # Initialize Tools
|
229 |
+
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
|
230 |
+
|
231 |
+
|
232 |
+
# # Instantiate Initializer
|
233 |
+
# initializer = Initializer(
|
234 |
+
# enabled_tools=enabled_tools,
|
235 |
+
# model_string=args.llm_engine_name
|
236 |
+
# )
|
237 |
+
|
238 |
+
# # Instantiate Planner
|
239 |
+
# planner = Planner(
|
240 |
+
# llm_engine_name=args.llm_engine_name,
|
241 |
+
# toolbox_metadata=initializer.toolbox_metadata,
|
242 |
+
# available_tools=initializer.available_tools
|
243 |
+
# )
|
244 |
+
|
245 |
+
# # Instantiate Memory
|
246 |
+
# memory = Memory()
|
247 |
+
|
248 |
+
# # Instantiate Executor
|
249 |
+
# executor = Executor(
|
250 |
+
# llm_engine_name=args.llm_engine_name,
|
251 |
+
# root_cache_dir=args.root_cache_dir,
|
252 |
+
# enable_signal=False
|
253 |
+
# )
|
254 |
+
|
255 |
+
# # Instantiate Solver
|
256 |
+
# solver = Solver(
|
257 |
+
# planner=planner,
|
258 |
+
# memory=memory,
|
259 |
+
# executor=executor,
|
260 |
+
# task=args.task,
|
261 |
+
# task_description=args.task_description,
|
262 |
+
# output_types=args.output_types, # Add new parameter
|
263 |
+
# verbose=args.verbose,
|
264 |
+
# max_steps=args.max_steps,
|
265 |
+
# max_time=args.max_time,
|
266 |
+
# output_json_dir=args.output_json_dir,
|
267 |
+
# root_cache_dir=args.root_cache_dir
|
268 |
+
# )
|
269 |
+
|
270 |
+
# # Test Inputs
|
271 |
+
# # user_query = "How many balls are there in the image?"
|
272 |
+
# # user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
|
273 |
+
|
274 |
+
# # # Load the image as a PIL object
|
275 |
+
# # user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
|
276 |
+
|
277 |
+
# # print("\n=== Starting Problem Solving ===\n")
|
278 |
+
# # messages = []
|
279 |
+
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
|
280 |
+
# # for message in message_batch:
|
281 |
+
# # print(f"{message.role}: {message.content}")
|
282 |
+
|
283 |
+
# # messages = []
|
284 |
+
# # solver.stream_solve_user_problem(user_query, user_image, messages)
|
285 |
+
|
286 |
+
|
287 |
+
# # def solve_problem_stream(user_query, user_image):
|
288 |
+
# # messages = [] # Ensure it's a list of [role, content] pairs
|
289 |
+
|
290 |
+
# # for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
|
291 |
+
# # yield message_batch # Stream messages correctly in tuple format
|
292 |
+
|
293 |
+
# # solve_problem_stream(user_query, user_image)
|
294 |
+
|
295 |
+
# # ========== Gradio Interface ==========
|
296 |
+
# with gr.Blocks() as demo:
|
297 |
+
# gr.Markdown("# π§ OctoTools AI Solver") # Title
|
298 |
+
|
299 |
+
# with gr.Row():
|
300 |
+
# user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
|
301 |
+
# user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
|
302 |
+
|
303 |
+
# run_button = gr.Button("Run") # Run button
|
304 |
+
# chatbot_output = gr.Chatbot(label="Problem-Solving Output")
|
305 |
+
|
306 |
+
# # Link button click to function
|
307 |
+
# run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
|
308 |
+
|
309 |
+
# # Launch the Gradio app
|
310 |
+
# demo.launch()
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
# if __name__ == "__main__":
|
315 |
+
# args = parse_arguments()
|
316 |
+
# main(args)
|