File size: 5,021 Bytes
28635a8 401487d 28635a8 1e2f14d 28635a8 7918fa4 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 87e8482 28635a8 401487d 28635a8 401487d 28635a8 87e8482 28635a8 87e8482 28635a8 401487d e7504bc 28635a8 87e8482 28635a8 87e8482 5d7916f 87e8482 28635a8 b6fe238 28635a8 94d0b05 28635a8 b6fe238 28635a8 763e3ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_Rose_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing chess information.
"""
try:
system_message = "You are a big sister chatbot that provides answers to questions about periods, puberty, hygiene, etc that people may be uncomfortable asking in person."
user_message = f"Here's the info on your question: {relevant_segment}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to Blossom Buddy! I'm Rose. You can ask me anything about puberty, hygiene, periods, and sustainability."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "I don't know the answer to that question! Please either restate the question or report this issue."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = "Welcome to Blossom Buddy! My name's Rose."
'Your AI-driven assistant for all period or puberty-related queries. Created by Lila, Harper, and Mara of the 2024 Kode With Klossy AI/ML Camp.'
topics = """
### Feel Free to ask me anything from the topics below!
- Menstruation
- Puberty
- Hygiene
- Sustainability
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="ChessBot Response", placeholder="Rose will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True) |