Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -117,52 +117,50 @@ def get_faq_from_supabase(admin_id: str) -> List[Dict]:
|
|
117 |
|
118 |
# API Endpoints
|
119 |
@app.post("/predict")
|
120 |
-
async def predict(
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
if not question.strip():
|
126 |
-
return {"data": ["Pertanyaan tidak boleh kosong"]}
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
if
|
135 |
-
return {"data": ["
|
136 |
-
|
137 |
-
return {"data": [answers[best_idx]]}
|
138 |
-
except Exception:
|
139 |
-
return {"data": ["Sedang ada gangguan teknis, coba lagi nanti"]}
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
question_embeddings = model.encode(questions, convert_to_tensor=True)
|
148 |
query_embedding = model.encode(question, convert_to_tensor=True)
|
149 |
|
150 |
# Calculate similarity
|
151 |
-
similarity = util.pytorch_cos_sim(query_embedding,
|
152 |
best_idx = torch.argmax(similarity).item()
|
153 |
best_score = similarity[0][best_idx].item()
|
154 |
|
155 |
-
#
|
156 |
-
if best_score <
|
157 |
-
return {"data": ["Maaf, saya tidak mengerti pertanyaan Anda
|
158 |
|
159 |
return {"data": [answers[best_idx]]}
|
|
|
160 |
except Exception as e:
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
164 |
)
|
165 |
|
|
|
166 |
@app.post("/save_chat")
|
167 |
async def save_chat(chat: ChatMessage):
|
168 |
"""Save chat message to database"""
|
|
|
117 |
|
118 |
# API Endpoints
|
119 |
@app.post("/predict")
|
120 |
+
async def predict(request: Request):
|
121 |
+
try:
|
122 |
+
body = await request.json()
|
123 |
+
admin_id = body.get("data", [None, None])[0]
|
124 |
+
question = body.get("data", [None, None])[1]
|
|
|
|
|
125 |
|
126 |
+
if not admin_id or not question:
|
127 |
+
return JSONResponse(
|
128 |
+
{"data": ["Admin ID atau pertanyaan tidak valid"]},
|
129 |
+
status_code=400
|
130 |
+
)
|
131 |
|
132 |
+
# Get FAQs for this admin
|
133 |
+
faqs = get_faq_from_supabase(admin_id)
|
134 |
+
if not faqs:
|
135 |
+
return {"data": ["Maaf, belum ada FAQ yang tersedia."]}
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Process question
|
138 |
+
questions = [f["question"] for f in faqs]
|
139 |
+
answers = [f["answer"] for f in faqs]
|
140 |
|
141 |
+
# Get embeddings
|
142 |
+
embeddings = model.encode(questions, convert_to_tensor=True)
|
|
|
143 |
query_embedding = model.encode(question, convert_to_tensor=True)
|
144 |
|
145 |
# Calculate similarity
|
146 |
+
similarity = util.pytorch_cos_sim(query_embedding, embeddings)
|
147 |
best_idx = torch.argmax(similarity).item()
|
148 |
best_score = similarity[0][best_idx].item()
|
149 |
|
150 |
+
# Threshold similarity (minimal 0.3)
|
151 |
+
if best_score < 0.3:
|
152 |
+
return {"data": ["Maaf, saya tidak mengerti pertanyaan Anda"]}
|
153 |
|
154 |
return {"data": [answers[best_idx]]}
|
155 |
+
|
156 |
except Exception as e:
|
157 |
+
print(f"Error in prediction: {str(e)}")
|
158 |
+
return JSONResponse(
|
159 |
+
{"data": ["Terjadi kesalahan saat memproses pertanyaan"]},
|
160 |
+
status_code=500
|
161 |
)
|
162 |
|
163 |
+
|
164 |
@app.post("/save_chat")
|
165 |
async def save_chat(chat: ChatMessage):
|
166 |
"""Save chat message to database"""
|