Oussamahajoui
commited on
Commit
Β·
62a5519
1
Parent(s):
f4ec2f1
upload
Browse files- .gitignore +18 -0
- Code/Datadownload.ipynb +256 -0
- Code/Testing NB.ipynb +1056 -0
- Code/Training NB.ipynb +0 -0
- Code/Training_NB.ipynb +0 -0
- Code/app.py +163 -0
- Code/test.ipynb +256 -0
.gitignore
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
flagged/image/tmp_kzg5jrp.jpg
|
3 |
+
flagged/image/tmpawmdga4z.jpg
|
4 |
+
flagged/log.csv
|
5 |
+
flagged/image/tmpv22yik0n.jpg
|
6 |
+
flagged/image/tmptuiort3g.jpg
|
7 |
+
flagged/image/tmpsyptwjk0.jpg
|
8 |
+
flagged/image/tmpo70zn1zc.jpg
|
9 |
+
flagged/image/tmpm7kl_i0r.jpg
|
10 |
+
flagged/image/tmpfjoni2co.jpg
|
11 |
+
flagged/image/tmpct6wib32.jpg
|
12 |
+
*.jpg
|
13 |
+
Checkpoint/baseline_V0.pth.tar
|
14 |
+
Data/sample_submission.csv
|
15 |
+
Data/solution.csv
|
16 |
+
Data/train.csv
|
17 |
+
Data/test.zip
|
18 |
+
Data/train.zip
|
Code/Datadownload.ipynb
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Token is valid.\n",
|
13 |
+
"Your token has been saved in your configured git credential helpers (manager-core).\n",
|
14 |
+
"Your token has been saved to C:\\Users\\Oussama\\.cache\\huggingface\\token\n",
|
15 |
+
"Login successful\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"from huggingface_hub import login\n",
|
21 |
+
"login()"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"application/vnd.jupyter.widget-view+json": {
|
32 |
+
"model_id": "e5eb52f9282f43cfa4f06b1d9c6dc08b",
|
33 |
+
"version_major": 2,
|
34 |
+
"version_minor": 0
|
35 |
+
},
|
36 |
+
"text/plain": [
|
37 |
+
"Downloading readme: 0%| | 0.00/1.24k [00:00<?, ?B/s]"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"metadata": {},
|
41 |
+
"output_type": "display_data"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "stdout",
|
45 |
+
"output_type": "stream",
|
46 |
+
"text": [
|
47 |
+
"Downloading and preparing dataset None/None to C:/Users/Oussama/.cache/huggingface/datasets/competitions___parquet/competitions--aiornot-759454878caed5d9/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"application/vnd.jupyter.widget-view+json": {
|
53 |
+
"model_id": "37ae63ab36cc448e90aa292609f4e5d4",
|
54 |
+
"version_major": 2,
|
55 |
+
"version_minor": 0
|
56 |
+
},
|
57 |
+
"text/plain": [
|
58 |
+
"Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "display_data"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"application/vnd.jupyter.widget-view+json": {
|
67 |
+
"model_id": "e208b22a102847b4862d336b32cce3e1",
|
68 |
+
"version_major": 2,
|
69 |
+
"version_minor": 0
|
70 |
+
},
|
71 |
+
"text/plain": [
|
72 |
+
"Downloading data: 0%| | 0.00/354M [00:00<?, ?B/s]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "display_data"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"application/vnd.jupyter.widget-view+json": {
|
81 |
+
"model_id": "c31d5357bf9c44e99b19820ea10ad70a",
|
82 |
+
"version_major": 2,
|
83 |
+
"version_minor": 0
|
84 |
+
},
|
85 |
+
"text/plain": [
|
86 |
+
"Downloading data: 0%| | 0.00/356M [00:00<?, ?B/s]"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "display_data"
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"data": {
|
94 |
+
"application/vnd.jupyter.widget-view+json": {
|
95 |
+
"model_id": "b7de3daec8a54b28a07cd580734f4bf4",
|
96 |
+
"version_major": 2,
|
97 |
+
"version_minor": 0
|
98 |
+
},
|
99 |
+
"text/plain": [
|
100 |
+
"Downloading data: 0%| | 0.00/415M [00:00<?, ?B/s]"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "display_data"
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"application/vnd.jupyter.widget-view+json": {
|
109 |
+
"model_id": "67b76cdca655426d9174aa7655345ecb",
|
110 |
+
"version_major": 2,
|
111 |
+
"version_minor": 0
|
112 |
+
},
|
113 |
+
"text/plain": [
|
114 |
+
"Downloading data: 0%| | 0.00/418M [00:00<?, ?B/s]"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
"metadata": {},
|
118 |
+
"output_type": "display_data"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"data": {
|
122 |
+
"application/vnd.jupyter.widget-view+json": {
|
123 |
+
"model_id": "373dd6818e5c4500b9d48de516bcb427",
|
124 |
+
"version_major": 2,
|
125 |
+
"version_minor": 0
|
126 |
+
},
|
127 |
+
"text/plain": [
|
128 |
+
"Downloading data: 0%| | 0.00/416M [00:00<?, ?B/s]"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"metadata": {},
|
132 |
+
"output_type": "display_data"
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"data": {
|
136 |
+
"application/vnd.jupyter.widget-view+json": {
|
137 |
+
"model_id": "9fc356325be34db1844de564ee0395fc",
|
138 |
+
"version_major": 2,
|
139 |
+
"version_minor": 0
|
140 |
+
},
|
141 |
+
"text/plain": [
|
142 |
+
"Downloading data: 0%| | 0.00/416M [00:00<?, ?B/s]"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "display_data"
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"application/vnd.jupyter.widget-view+json": {
|
151 |
+
"model_id": "8d8d0259ea1840d38f316bfc3809fa44",
|
152 |
+
"version_major": 2,
|
153 |
+
"version_minor": 0
|
154 |
+
},
|
155 |
+
"text/plain": [
|
156 |
+
"Extracting data files: 0%| | 0/2 [00:00<?, ?it/s]"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
"metadata": {},
|
160 |
+
"output_type": "display_data"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"data": {
|
164 |
+
"application/vnd.jupyter.widget-view+json": {
|
165 |
+
"model_id": "1780ace548794a58b318e723ae297b50",
|
166 |
+
"version_major": 2,
|
167 |
+
"version_minor": 0
|
168 |
+
},
|
169 |
+
"text/plain": [
|
170 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
"metadata": {},
|
174 |
+
"output_type": "display_data"
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"data": {
|
178 |
+
"application/vnd.jupyter.widget-view+json": {
|
179 |
+
"model_id": "fbd137787e1340bfaef5b62f6fbc7556",
|
180 |
+
"version_major": 2,
|
181 |
+
"version_minor": 0
|
182 |
+
},
|
183 |
+
"text/plain": [
|
184 |
+
"Generating test split: 0 examples [00:00, ? examples/s]"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
"metadata": {},
|
188 |
+
"output_type": "display_data"
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"name": "stdout",
|
192 |
+
"output_type": "stream",
|
193 |
+
"text": [
|
194 |
+
"Dataset parquet downloaded and prepared to C:/Users/Oussama/.cache/huggingface/datasets/competitions___parquet/competitions--aiornot-759454878caed5d9/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"data": {
|
199 |
+
"application/vnd.jupyter.widget-view+json": {
|
200 |
+
"model_id": "2087104741e1465d9fc4b033d5cd8bdf",
|
201 |
+
"version_major": 2,
|
202 |
+
"version_minor": 0
|
203 |
+
},
|
204 |
+
"text/plain": [
|
205 |
+
" 0%| | 0/2 [00:00<?, ?it/s]"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "display_data"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"from datasets import load_dataset\n",
|
214 |
+
"\n",
|
215 |
+
"# If the dataset is gated/private, make sure you have run huggingface-cli login\n",
|
216 |
+
"dataset = load_dataset(\"competitions/aiornot\")"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": null,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": []
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": []
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"kernelspec": {
|
236 |
+
"display_name": "Python 3",
|
237 |
+
"language": "python",
|
238 |
+
"name": "python3"
|
239 |
+
},
|
240 |
+
"language_info": {
|
241 |
+
"codemirror_mode": {
|
242 |
+
"name": "ipython",
|
243 |
+
"version": 3
|
244 |
+
},
|
245 |
+
"file_extension": ".py",
|
246 |
+
"mimetype": "text/x-python",
|
247 |
+
"name": "python",
|
248 |
+
"nbconvert_exporter": "python",
|
249 |
+
"pygments_lexer": "ipython3",
|
250 |
+
"version": "3.10.11"
|
251 |
+
},
|
252 |
+
"orig_nbformat": 4
|
253 |
+
},
|
254 |
+
"nbformat": 4,
|
255 |
+
"nbformat_minor": 2
|
256 |
+
}
|
Code/Testing NB.ipynb
ADDED
@@ -0,0 +1,1056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"accelerator": "GPU",
|
16 |
+
"gpuClass": "standard"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 32,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "L6gytYO-DHMK",
|
27 |
+
"outputId": "b0c87fe1-77a4-45c7-8ea4-b8211cc0c4a7"
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"output_type": "stream",
|
32 |
+
"name": "stdout",
|
33 |
+
"text": [
|
34 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"from google.colab import drive\n",
|
40 |
+
"drive.mount('/content/drive')"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"source": [
|
46 |
+
"%pip install efficientnet-pytorch"
|
47 |
+
],
|
48 |
+
"metadata": {
|
49 |
+
"colab": {
|
50 |
+
"base_uri": "https://localhost:8080/"
|
51 |
+
},
|
52 |
+
"id": "OoBBN22XDRNG",
|
53 |
+
"outputId": "c63a35aa-a077-44c7-93e5-bc9ba9732770"
|
54 |
+
},
|
55 |
+
"execution_count": 33,
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"output_type": "stream",
|
59 |
+
"name": "stdout",
|
60 |
+
"text": [
|
61 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
62 |
+
"Requirement already satisfied: efficientnet-pytorch in /usr/local/lib/python3.9/dist-packages (0.7.1)\n",
|
63 |
+
"Requirement already satisfied: torch in /usr/local/lib/python3.9/dist-packages (from efficientnet-pytorch) (2.0.0+cu118)\n",
|
64 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (4.5.0)\n",
|
65 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (1.11.1)\n",
|
66 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.11.0)\n",
|
67 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.1)\n",
|
68 |
+
"Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (2.0.0)\n",
|
69 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.1.2)\n",
|
70 |
+
"Requirement already satisfied: lit in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch->efficientnet-pytorch) (16.0.1)\n",
|
71 |
+
"Requirement already satisfied: cmake in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch->efficientnet-pytorch) (3.25.2)\n",
|
72 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.9/dist-packages (from jinja2->torch->efficientnet-pytorch) (2.1.2)\n",
|
73 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.9/dist-packages (from sympy->torch->efficientnet-pytorch) (1.3.0)\n"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"source": [
|
81 |
+
"import numpy as np\n",
|
82 |
+
"import pandas as pd\n",
|
83 |
+
"import matplotlib.pyplot as plt\n",
|
84 |
+
"import os\n",
|
85 |
+
"from PIL import Image\n",
|
86 |
+
"import torch\n",
|
87 |
+
"from torch import nn, optim\n",
|
88 |
+
"import torch.nn.functional as F\n",
|
89 |
+
"from torch.utils.data import DataLoader, Dataset\n",
|
90 |
+
"import albumentations as A\n",
|
91 |
+
"from albumentations.pytorch import ToTensorV2 \n",
|
92 |
+
"from tqdm import tqdm\n",
|
93 |
+
"from torchvision import models\n",
|
94 |
+
"from efficientnet_pytorch import EfficientNet\n",
|
95 |
+
"from sklearn import metrics"
|
96 |
+
],
|
97 |
+
"metadata": {
|
98 |
+
"id": "phJgllqcDSuH"
|
99 |
+
},
|
100 |
+
"execution_count": 34,
|
101 |
+
"outputs": []
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"source": [
|
106 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"id": "DyUTFa31DTdp"
|
110 |
+
},
|
111 |
+
"execution_count": 35,
|
112 |
+
"outputs": []
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"source": [
|
117 |
+
"class Dataset(Dataset):\n",
|
118 |
+
" def __init__(self, root_images, root_file, transform = None):\n",
|
119 |
+
" self.root_images = root_images\n",
|
120 |
+
" self.root_file = root_file\n",
|
121 |
+
" self.transform = transform\n",
|
122 |
+
" self.file = pd.read_csv(root_file)\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
" def __len__(self):\n",
|
126 |
+
" return self.file.shape[0]\n",
|
127 |
+
" \n",
|
128 |
+
" def __getitem__(self,index):\n",
|
129 |
+
" img_path = os.path.join(self.root_images, self.file['id'][index])\n",
|
130 |
+
" image = np.array(Image.open(img_path).convert('RGB'))\n",
|
131 |
+
" \n",
|
132 |
+
" if self.transform is not None:\n",
|
133 |
+
" augmentations = self.transform(image = image)\n",
|
134 |
+
" image = augmentations['image'] \n",
|
135 |
+
" \n",
|
136 |
+
" return image"
|
137 |
+
],
|
138 |
+
"metadata": {
|
139 |
+
"id": "kTk-mXXUDUUA"
|
140 |
+
},
|
141 |
+
"execution_count": 36,
|
142 |
+
"outputs": []
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"source": [
|
147 |
+
"learning_rate = 0.0001\n",
|
148 |
+
"batch_size = 32\n",
|
149 |
+
"epochs = 10\n",
|
150 |
+
"height = 224 \n",
|
151 |
+
"width = 224\n",
|
152 |
+
"IMG = '/content/drive/MyDrive/Colab Notebooks/AI images or Not/test'\n",
|
153 |
+
"FILE = '/content/sample_submission.csv'"
|
154 |
+
],
|
155 |
+
"metadata": {
|
156 |
+
"id": "HXEpa4PlDU85"
|
157 |
+
},
|
158 |
+
"execution_count": 37,
|
159 |
+
"outputs": []
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"source": [
|
164 |
+
"def get_loader(image, file, batch_size, test_transform):\n",
|
165 |
+
" \n",
|
166 |
+
" test_ds = Dataset(image , file, test_transform)\n",
|
167 |
+
" test_loader = DataLoader(test_ds, batch_size= batch_size, shuffle= False)\n",
|
168 |
+
"\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
" return test_loader "
|
172 |
+
],
|
173 |
+
"metadata": {
|
174 |
+
"id": "i-VOTQp2DVbK"
|
175 |
+
},
|
176 |
+
"execution_count": 38,
|
177 |
+
"outputs": []
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"source": [
|
182 |
+
"normalize = A.Normalize(\n",
|
183 |
+
" mean = [0.485 , 0.456 , 0.406],\n",
|
184 |
+
" std = [0.229 , 0.224, 0.255],\n",
|
185 |
+
" max_pixel_value= 255.0\n",
|
186 |
+
")\n",
|
187 |
+
"\n",
|
188 |
+
"\n",
|
189 |
+
"test_transform = A.Compose(\n",
|
190 |
+
" [A.Resize(width=width , height= height),\n",
|
191 |
+
" normalize,\n",
|
192 |
+
" ToTensorV2()\n",
|
193 |
+
" ]\n",
|
194 |
+
")\n"
|
195 |
+
],
|
196 |
+
"metadata": {
|
197 |
+
"id": "RD4GnrT6DVpr"
|
198 |
+
},
|
199 |
+
"execution_count": 39,
|
200 |
+
"outputs": []
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"source": [
|
205 |
+
"class Net(nn.Module):\n",
|
206 |
+
" def __init__(self):\n",
|
207 |
+
" super().__init__()\n",
|
208 |
+
" self.model = EfficientNet.from_pretrained('efficientnet-b4')\n",
|
209 |
+
" self.fct = nn.Linear(1000,1)\n",
|
210 |
+
" \n",
|
211 |
+
" def forward(self,img):\n",
|
212 |
+
" x = self.model(img)\n",
|
213 |
+
" # print(x.shape)\n",
|
214 |
+
" x = self.fct(x)\n",
|
215 |
+
" return x"
|
216 |
+
],
|
217 |
+
"metadata": {
|
218 |
+
"id": "HYH0pBe9DV3M"
|
219 |
+
},
|
220 |
+
"execution_count": 40,
|
221 |
+
"outputs": []
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"source": [
|
226 |
+
"def load_checkpoint(checkpoint, model, optimizer):\n",
|
227 |
+
" print('====> Loading...')\n",
|
228 |
+
" model.load_state_dict(checkpoint['state_dict'])\n",
|
229 |
+
" optimizer.load_state_dict(checkpoint['optimizer'])"
|
230 |
+
],
|
231 |
+
"metadata": {
|
232 |
+
"id": "1Ype_u3qDV-n"
|
233 |
+
},
|
234 |
+
"execution_count": 41,
|
235 |
+
"outputs": []
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"source": [
|
240 |
+
"test = pd.read_csv(FILE)\n",
|
241 |
+
"test"
|
242 |
+
],
|
243 |
+
"metadata": {
|
244 |
+
"colab": {
|
245 |
+
"base_uri": "https://localhost:8080/",
|
246 |
+
"height": 424
|
247 |
+
},
|
248 |
+
"id": "Jf_Is1qDGz-W",
|
249 |
+
"outputId": "cf79a4c0-2bca-473c-886e-726d7956015d"
|
250 |
+
},
|
251 |
+
"execution_count": 42,
|
252 |
+
"outputs": [
|
253 |
+
{
|
254 |
+
"output_type": "execute_result",
|
255 |
+
"data": {
|
256 |
+
"text/plain": [
|
257 |
+
" id label\n",
|
258 |
+
"0 0.jpg 0\n",
|
259 |
+
"1 1.jpg 0\n",
|
260 |
+
"2 10.jpg 0\n",
|
261 |
+
"3 100.jpg 0\n",
|
262 |
+
"4 1000.jpg 0\n",
|
263 |
+
"... ... ...\n",
|
264 |
+
"43437 9995.jpg 0\n",
|
265 |
+
"43438 9996.jpg 0\n",
|
266 |
+
"43439 9997.jpg 0\n",
|
267 |
+
"43440 9998.jpg 0\n",
|
268 |
+
"43441 9999.jpg 0\n",
|
269 |
+
"\n",
|
270 |
+
"[43442 rows x 2 columns]"
|
271 |
+
],
|
272 |
+
"text/html": [
|
273 |
+
"\n",
|
274 |
+
" <div id=\"df-e57e96ec-2c2a-4dd2-b93e-600b15eda5bc\">\n",
|
275 |
+
" <div class=\"colab-df-container\">\n",
|
276 |
+
" <div>\n",
|
277 |
+
"<style scoped>\n",
|
278 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
279 |
+
" vertical-align: middle;\n",
|
280 |
+
" }\n",
|
281 |
+
"\n",
|
282 |
+
" .dataframe tbody tr th {\n",
|
283 |
+
" vertical-align: top;\n",
|
284 |
+
" }\n",
|
285 |
+
"\n",
|
286 |
+
" .dataframe thead th {\n",
|
287 |
+
" text-align: right;\n",
|
288 |
+
" }\n",
|
289 |
+
"</style>\n",
|
290 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
291 |
+
" <thead>\n",
|
292 |
+
" <tr style=\"text-align: right;\">\n",
|
293 |
+
" <th></th>\n",
|
294 |
+
" <th>id</th>\n",
|
295 |
+
" <th>label</th>\n",
|
296 |
+
" </tr>\n",
|
297 |
+
" </thead>\n",
|
298 |
+
" <tbody>\n",
|
299 |
+
" <tr>\n",
|
300 |
+
" <th>0</th>\n",
|
301 |
+
" <td>0.jpg</td>\n",
|
302 |
+
" <td>0</td>\n",
|
303 |
+
" </tr>\n",
|
304 |
+
" <tr>\n",
|
305 |
+
" <th>1</th>\n",
|
306 |
+
" <td>1.jpg</td>\n",
|
307 |
+
" <td>0</td>\n",
|
308 |
+
" </tr>\n",
|
309 |
+
" <tr>\n",
|
310 |
+
" <th>2</th>\n",
|
311 |
+
" <td>10.jpg</td>\n",
|
312 |
+
" <td>0</td>\n",
|
313 |
+
" </tr>\n",
|
314 |
+
" <tr>\n",
|
315 |
+
" <th>3</th>\n",
|
316 |
+
" <td>100.jpg</td>\n",
|
317 |
+
" <td>0</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <th>4</th>\n",
|
321 |
+
" <td>1000.jpg</td>\n",
|
322 |
+
" <td>0</td>\n",
|
323 |
+
" </tr>\n",
|
324 |
+
" <tr>\n",
|
325 |
+
" <th>...</th>\n",
|
326 |
+
" <td>...</td>\n",
|
327 |
+
" <td>...</td>\n",
|
328 |
+
" </tr>\n",
|
329 |
+
" <tr>\n",
|
330 |
+
" <th>43437</th>\n",
|
331 |
+
" <td>9995.jpg</td>\n",
|
332 |
+
" <td>0</td>\n",
|
333 |
+
" </tr>\n",
|
334 |
+
" <tr>\n",
|
335 |
+
" <th>43438</th>\n",
|
336 |
+
" <td>9996.jpg</td>\n",
|
337 |
+
" <td>0</td>\n",
|
338 |
+
" </tr>\n",
|
339 |
+
" <tr>\n",
|
340 |
+
" <th>43439</th>\n",
|
341 |
+
" <td>9997.jpg</td>\n",
|
342 |
+
" <td>0</td>\n",
|
343 |
+
" </tr>\n",
|
344 |
+
" <tr>\n",
|
345 |
+
" <th>43440</th>\n",
|
346 |
+
" <td>9998.jpg</td>\n",
|
347 |
+
" <td>0</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" <tr>\n",
|
350 |
+
" <th>43441</th>\n",
|
351 |
+
" <td>9999.jpg</td>\n",
|
352 |
+
" <td>0</td>\n",
|
353 |
+
" </tr>\n",
|
354 |
+
" </tbody>\n",
|
355 |
+
"</table>\n",
|
356 |
+
"<p>43442 rows Γ 2 columns</p>\n",
|
357 |
+
"</div>\n",
|
358 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e57e96ec-2c2a-4dd2-b93e-600b15eda5bc')\"\n",
|
359 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
360 |
+
" style=\"display:none;\">\n",
|
361 |
+
" \n",
|
362 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
363 |
+
" width=\"24px\">\n",
|
364 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
365 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
366 |
+
" </svg>\n",
|
367 |
+
" </button>\n",
|
368 |
+
" \n",
|
369 |
+
" <style>\n",
|
370 |
+
" .colab-df-container {\n",
|
371 |
+
" display:flex;\n",
|
372 |
+
" flex-wrap:wrap;\n",
|
373 |
+
" gap: 12px;\n",
|
374 |
+
" }\n",
|
375 |
+
"\n",
|
376 |
+
" .colab-df-convert {\n",
|
377 |
+
" background-color: #E8F0FE;\n",
|
378 |
+
" border: none;\n",
|
379 |
+
" border-radius: 50%;\n",
|
380 |
+
" cursor: pointer;\n",
|
381 |
+
" display: none;\n",
|
382 |
+
" fill: #1967D2;\n",
|
383 |
+
" height: 32px;\n",
|
384 |
+
" padding: 0 0 0 0;\n",
|
385 |
+
" width: 32px;\n",
|
386 |
+
" }\n",
|
387 |
+
"\n",
|
388 |
+
" .colab-df-convert:hover {\n",
|
389 |
+
" background-color: #E2EBFA;\n",
|
390 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
391 |
+
" fill: #174EA6;\n",
|
392 |
+
" }\n",
|
393 |
+
"\n",
|
394 |
+
" [theme=dark] .colab-df-convert {\n",
|
395 |
+
" background-color: #3B4455;\n",
|
396 |
+
" fill: #D2E3FC;\n",
|
397 |
+
" }\n",
|
398 |
+
"\n",
|
399 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
400 |
+
" background-color: #434B5C;\n",
|
401 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
402 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
403 |
+
" fill: #FFFFFF;\n",
|
404 |
+
" }\n",
|
405 |
+
" </style>\n",
|
406 |
+
"\n",
|
407 |
+
" <script>\n",
|
408 |
+
" const buttonEl =\n",
|
409 |
+
" document.querySelector('#df-e57e96ec-2c2a-4dd2-b93e-600b15eda5bc button.colab-df-convert');\n",
|
410 |
+
" buttonEl.style.display =\n",
|
411 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
412 |
+
"\n",
|
413 |
+
" async function convertToInteractive(key) {\n",
|
414 |
+
" const element = document.querySelector('#df-e57e96ec-2c2a-4dd2-b93e-600b15eda5bc');\n",
|
415 |
+
" const dataTable =\n",
|
416 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
417 |
+
" [key], {});\n",
|
418 |
+
" if (!dataTable) return;\n",
|
419 |
+
"\n",
|
420 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
421 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
422 |
+
" + ' to learn more about interactive tables.';\n",
|
423 |
+
" element.innerHTML = '';\n",
|
424 |
+
" dataTable['output_type'] = 'display_data';\n",
|
425 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
426 |
+
" const docLink = document.createElement('div');\n",
|
427 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
428 |
+
" element.appendChild(docLink);\n",
|
429 |
+
" }\n",
|
430 |
+
" </script>\n",
|
431 |
+
" </div>\n",
|
432 |
+
" </div>\n",
|
433 |
+
" "
|
434 |
+
]
|
435 |
+
},
|
436 |
+
"metadata": {},
|
437 |
+
"execution_count": 42
|
438 |
+
}
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"source": [
|
444 |
+
"model = Net().to(device)\n",
|
445 |
+
"optimizer = optim.Adam(model.parameters(), lr= learning_rate)\n",
|
446 |
+
"\n",
|
447 |
+
"checkpoint_file = '/content/drive/MyDrive/Colab Notebooks/AI images or Not/baseline_V0.pth.tar'\n",
|
448 |
+
"test_loader = get_loader(IMG, FILE, batch_size, test_transform)\n",
|
449 |
+
"checkpoint = torch.load(checkpoint_file, map_location=torch.device('cpu'))\n",
|
450 |
+
"load_checkpoint(checkpoint, model, optimizer)\n",
|
451 |
+
"\n",
|
452 |
+
"model.eval()\n",
|
453 |
+
"k = 0\n",
|
454 |
+
"for x in tqdm(test_loader):\n",
|
455 |
+
" x = x.to(device).to(torch.float32)\n",
|
456 |
+
" p = torch.sigmoid(model(x)).cpu().detach().numpy()\n",
|
457 |
+
"\n",
|
458 |
+
" for i in range(len(p)):\n",
|
459 |
+
" test['label'][k] = (p[i] > 0.75).astype('float')\n",
|
460 |
+
" k += 1"
|
461 |
+
],
|
462 |
+
"metadata": {
|
463 |
+
"id": "qWB6WzrlDWD7",
|
464 |
+
"colab": {
|
465 |
+
"base_uri": "https://localhost:8080/"
|
466 |
+
},
|
467 |
+
"outputId": "52e74e4b-96e7-40e7-d1b3-a22c7b70098d"
|
468 |
+
},
|
469 |
+
"execution_count": 43,
|
470 |
+
"outputs": [
|
471 |
+
{
|
472 |
+
"output_type": "stream",
|
473 |
+
"name": "stdout",
|
474 |
+
"text": [
|
475 |
+
"Loaded pretrained weights for efficientnet-b4\n",
|
476 |
+
"====> Loading...\n"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"output_type": "stream",
|
481 |
+
"name": "stderr",
|
482 |
+
"text": [
|
483 |
+
" 0%| | 0/1358 [00:00<?, ?it/s]<ipython-input-43-383dee41b09a>:16: SettingWithCopyWarning: \n",
|
484 |
+
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
485 |
+
"\n",
|
486 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
487 |
+
" test['label'][k] = (p[i] > 0.75).astype('float')\n",
|
488 |
+
"100%|ββββββββββ| 1358/1358 [4:56:02<00:00, 13.08s/it]\n"
|
489 |
+
]
|
490 |
+
}
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "code",
|
495 |
+
"source": [
|
496 |
+
"test"
|
497 |
+
],
|
498 |
+
"metadata": {
|
499 |
+
"id": "-zS8tYPBDWG7",
|
500 |
+
"colab": {
|
501 |
+
"base_uri": "https://localhost:8080/",
|
502 |
+
"height": 424
|
503 |
+
},
|
504 |
+
"outputId": "4a4c0b81-ff75-4ed7-a5df-6f98644f03e2"
|
505 |
+
},
|
506 |
+
"execution_count": 44,
|
507 |
+
"outputs": [
|
508 |
+
{
|
509 |
+
"output_type": "execute_result",
|
510 |
+
"data": {
|
511 |
+
"text/plain": [
|
512 |
+
" id label\n",
|
513 |
+
"0 0.jpg 0\n",
|
514 |
+
"1 1.jpg 0\n",
|
515 |
+
"2 10.jpg 0\n",
|
516 |
+
"3 100.jpg 1\n",
|
517 |
+
"4 1000.jpg 0\n",
|
518 |
+
"... ... ...\n",
|
519 |
+
"43437 9995.jpg 1\n",
|
520 |
+
"43438 9996.jpg 0\n",
|
521 |
+
"43439 9997.jpg 0\n",
|
522 |
+
"43440 9998.jpg 0\n",
|
523 |
+
"43441 9999.jpg 1\n",
|
524 |
+
"\n",
|
525 |
+
"[43442 rows x 2 columns]"
|
526 |
+
],
|
527 |
+
"text/html": [
|
528 |
+
"\n",
|
529 |
+
" <div id=\"df-00389cce-5634-451c-81fb-649bced26029\">\n",
|
530 |
+
" <div class=\"colab-df-container\">\n",
|
531 |
+
" <div>\n",
|
532 |
+
"<style scoped>\n",
|
533 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
534 |
+
" vertical-align: middle;\n",
|
535 |
+
" }\n",
|
536 |
+
"\n",
|
537 |
+
" .dataframe tbody tr th {\n",
|
538 |
+
" vertical-align: top;\n",
|
539 |
+
" }\n",
|
540 |
+
"\n",
|
541 |
+
" .dataframe thead th {\n",
|
542 |
+
" text-align: right;\n",
|
543 |
+
" }\n",
|
544 |
+
"</style>\n",
|
545 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
546 |
+
" <thead>\n",
|
547 |
+
" <tr style=\"text-align: right;\">\n",
|
548 |
+
" <th></th>\n",
|
549 |
+
" <th>id</th>\n",
|
550 |
+
" <th>label</th>\n",
|
551 |
+
" </tr>\n",
|
552 |
+
" </thead>\n",
|
553 |
+
" <tbody>\n",
|
554 |
+
" <tr>\n",
|
555 |
+
" <th>0</th>\n",
|
556 |
+
" <td>0.jpg</td>\n",
|
557 |
+
" <td>0</td>\n",
|
558 |
+
" </tr>\n",
|
559 |
+
" <tr>\n",
|
560 |
+
" <th>1</th>\n",
|
561 |
+
" <td>1.jpg</td>\n",
|
562 |
+
" <td>0</td>\n",
|
563 |
+
" </tr>\n",
|
564 |
+
" <tr>\n",
|
565 |
+
" <th>2</th>\n",
|
566 |
+
" <td>10.jpg</td>\n",
|
567 |
+
" <td>0</td>\n",
|
568 |
+
" </tr>\n",
|
569 |
+
" <tr>\n",
|
570 |
+
" <th>3</th>\n",
|
571 |
+
" <td>100.jpg</td>\n",
|
572 |
+
" <td>1</td>\n",
|
573 |
+
" </tr>\n",
|
574 |
+
" <tr>\n",
|
575 |
+
" <th>4</th>\n",
|
576 |
+
" <td>1000.jpg</td>\n",
|
577 |
+
" <td>0</td>\n",
|
578 |
+
" </tr>\n",
|
579 |
+
" <tr>\n",
|
580 |
+
" <th>...</th>\n",
|
581 |
+
" <td>...</td>\n",
|
582 |
+
" <td>...</td>\n",
|
583 |
+
" </tr>\n",
|
584 |
+
" <tr>\n",
|
585 |
+
" <th>43437</th>\n",
|
586 |
+
" <td>9995.jpg</td>\n",
|
587 |
+
" <td>1</td>\n",
|
588 |
+
" </tr>\n",
|
589 |
+
" <tr>\n",
|
590 |
+
" <th>43438</th>\n",
|
591 |
+
" <td>9996.jpg</td>\n",
|
592 |
+
" <td>0</td>\n",
|
593 |
+
" </tr>\n",
|
594 |
+
" <tr>\n",
|
595 |
+
" <th>43439</th>\n",
|
596 |
+
" <td>9997.jpg</td>\n",
|
597 |
+
" <td>0</td>\n",
|
598 |
+
" </tr>\n",
|
599 |
+
" <tr>\n",
|
600 |
+
" <th>43440</th>\n",
|
601 |
+
" <td>9998.jpg</td>\n",
|
602 |
+
" <td>0</td>\n",
|
603 |
+
" </tr>\n",
|
604 |
+
" <tr>\n",
|
605 |
+
" <th>43441</th>\n",
|
606 |
+
" <td>9999.jpg</td>\n",
|
607 |
+
" <td>1</td>\n",
|
608 |
+
" </tr>\n",
|
609 |
+
" </tbody>\n",
|
610 |
+
"</table>\n",
|
611 |
+
"<p>43442 rows Γ 2 columns</p>\n",
|
612 |
+
"</div>\n",
|
613 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-00389cce-5634-451c-81fb-649bced26029')\"\n",
|
614 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
615 |
+
" style=\"display:none;\">\n",
|
616 |
+
" \n",
|
617 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
618 |
+
" width=\"24px\">\n",
|
619 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
620 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
621 |
+
" </svg>\n",
|
622 |
+
" </button>\n",
|
623 |
+
" \n",
|
624 |
+
" <style>\n",
|
625 |
+
" .colab-df-container {\n",
|
626 |
+
" display:flex;\n",
|
627 |
+
" flex-wrap:wrap;\n",
|
628 |
+
" gap: 12px;\n",
|
629 |
+
" }\n",
|
630 |
+
"\n",
|
631 |
+
" .colab-df-convert {\n",
|
632 |
+
" background-color: #E8F0FE;\n",
|
633 |
+
" border: none;\n",
|
634 |
+
" border-radius: 50%;\n",
|
635 |
+
" cursor: pointer;\n",
|
636 |
+
" display: none;\n",
|
637 |
+
" fill: #1967D2;\n",
|
638 |
+
" height: 32px;\n",
|
639 |
+
" padding: 0 0 0 0;\n",
|
640 |
+
" width: 32px;\n",
|
641 |
+
" }\n",
|
642 |
+
"\n",
|
643 |
+
" .colab-df-convert:hover {\n",
|
644 |
+
" background-color: #E2EBFA;\n",
|
645 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
646 |
+
" fill: #174EA6;\n",
|
647 |
+
" }\n",
|
648 |
+
"\n",
|
649 |
+
" [theme=dark] .colab-df-convert {\n",
|
650 |
+
" background-color: #3B4455;\n",
|
651 |
+
" fill: #D2E3FC;\n",
|
652 |
+
" }\n",
|
653 |
+
"\n",
|
654 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
655 |
+
" background-color: #434B5C;\n",
|
656 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
657 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
658 |
+
" fill: #FFFFFF;\n",
|
659 |
+
" }\n",
|
660 |
+
" </style>\n",
|
661 |
+
"\n",
|
662 |
+
" <script>\n",
|
663 |
+
" const buttonEl =\n",
|
664 |
+
" document.querySelector('#df-00389cce-5634-451c-81fb-649bced26029 button.colab-df-convert');\n",
|
665 |
+
" buttonEl.style.display =\n",
|
666 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
667 |
+
"\n",
|
668 |
+
" async function convertToInteractive(key) {\n",
|
669 |
+
" const element = document.querySelector('#df-00389cce-5634-451c-81fb-649bced26029');\n",
|
670 |
+
" const dataTable =\n",
|
671 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
672 |
+
" [key], {});\n",
|
673 |
+
" if (!dataTable) return;\n",
|
674 |
+
"\n",
|
675 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
676 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
677 |
+
" + ' to learn more about interactive tables.';\n",
|
678 |
+
" element.innerHTML = '';\n",
|
679 |
+
" dataTable['output_type'] = 'display_data';\n",
|
680 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
681 |
+
" const docLink = document.createElement('div');\n",
|
682 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
683 |
+
" element.appendChild(docLink);\n",
|
684 |
+
" }\n",
|
685 |
+
" </script>\n",
|
686 |
+
" </div>\n",
|
687 |
+
" </div>\n",
|
688 |
+
" "
|
689 |
+
]
|
690 |
+
},
|
691 |
+
"metadata": {},
|
692 |
+
"execution_count": 44
|
693 |
+
}
|
694 |
+
]
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"cell_type": "code",
|
698 |
+
"source": [
|
699 |
+
"test.to_csv('sub.csv', index=False)"
|
700 |
+
],
|
701 |
+
"metadata": {
|
702 |
+
"id": "nX_vnorKDWKK"
|
703 |
+
},
|
704 |
+
"execution_count": 45,
|
705 |
+
"outputs": []
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"cell_type": "code",
|
709 |
+
"source": [],
|
710 |
+
"metadata": {
|
711 |
+
"id": "JmJa1KolDWM5"
|
712 |
+
},
|
713 |
+
"execution_count": 45,
|
714 |
+
"outputs": []
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"cell_type": "code",
|
718 |
+
"source": [
|
719 |
+
"def predict(image):\n",
|
720 |
+
" image = np.array(image)\n",
|
721 |
+
" transform = A.Compose(\n",
|
722 |
+
" [A.Resize(width=width, height=height),\n",
|
723 |
+
" normalize,\n",
|
724 |
+
" ToTensorV2()\n",
|
725 |
+
" ]\n",
|
726 |
+
" )\n",
|
727 |
+
" image = transform(image=image)[\"image\"].unsqueeze(0).to(device).to(torch.float32)\n",
|
728 |
+
" with torch.no_grad():\n",
|
729 |
+
" model.eval()\n",
|
730 |
+
" output = torch.sigmoid(model(image))\n",
|
731 |
+
" label = (output > 0.75).item()\n",
|
732 |
+
" return \"AI Image\" if label else \"Not AI Image\""
|
733 |
+
],
|
734 |
+
"metadata": {
|
735 |
+
"id": "TKs8s0TyDWP0"
|
736 |
+
},
|
737 |
+
"execution_count": 46,
|
738 |
+
"outputs": []
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"cell_type": "code",
|
742 |
+
"source": [
|
743 |
+
"%pip install gradio"
|
744 |
+
],
|
745 |
+
"metadata": {
|
746 |
+
"colab": {
|
747 |
+
"base_uri": "https://localhost:8080/"
|
748 |
+
},
|
749 |
+
"id": "k7bGi6MqqO-r",
|
750 |
+
"outputId": "120d9571-3381-418a-9056-ff8b84199ca7"
|
751 |
+
},
|
752 |
+
"execution_count": 47,
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"output_type": "stream",
|
756 |
+
"name": "stdout",
|
757 |
+
"text": [
|
758 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
759 |
+
"Collecting gradio\n",
|
760 |
+
" Downloading gradio-3.27.0-py3-none-any.whl (17.3 MB)\n",
|
761 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m60.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
762 |
+
"\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.9/dist-packages (from gradio) (3.7.1)\n",
|
763 |
+
"Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from gradio) (1.22.4)\n",
|
764 |
+
"Requirement already satisfied: markdown-it-py[linkify]>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from gradio) (2.2.0)\n",
|
765 |
+
"Collecting aiohttp\n",
|
766 |
+
" Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
|
767 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m54.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
768 |
+
"\u001b[?25hCollecting orjson\n",
|
769 |
+
" Downloading orjson-3.8.10-cp39-cp39-manylinux_2_28_x86_64.whl (140 kB)\n",
|
770 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m140.5/140.5 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
771 |
+
"\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.9/dist-packages (from gradio) (8.4.0)\n",
|
772 |
+
"Collecting ffmpy\n",
|
773 |
+
" Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
|
774 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
775 |
+
"Requirement already satisfied: markupsafe in /usr/local/lib/python3.9/dist-packages (from gradio) (2.1.2)\n",
|
776 |
+
"Collecting huggingface-hub>=0.13.0\n",
|
777 |
+
" Downloading huggingface_hub-0.13.4-py3-none-any.whl (200 kB)\n",
|
778 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m200.1/200.1 kB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
779 |
+
"\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from gradio) (2.27.1)\n",
|
780 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from gradio) (4.5.0)\n",
|
781 |
+
"Requirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.9/dist-packages (from gradio) (4.2.2)\n",
|
782 |
+
"Collecting fastapi\n",
|
783 |
+
" Downloading fastapi-0.95.1-py3-none-any.whl (56 kB)\n",
|
784 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m57.0/57.0 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
785 |
+
"\u001b[?25hCollecting httpx\n",
|
786 |
+
" Downloading httpx-0.24.0-py3-none-any.whl (75 kB)\n",
|
787 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.3/75.3 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
788 |
+
"\u001b[?25hCollecting uvicorn\n",
|
789 |
+
" Downloading uvicorn-0.21.1-py3-none-any.whl (57 kB)\n",
|
790 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m57.8/57.8 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
791 |
+
"\u001b[?25hCollecting websockets>=10.0\n",
|
792 |
+
" Downloading websockets-11.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n",
|
793 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m129.7/129.7 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
794 |
+
"\u001b[?25hCollecting pydub\n",
|
795 |
+
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
|
796 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.9/dist-packages (from gradio) (6.0)\n",
|
797 |
+
"Collecting mdit-py-plugins<=0.3.3\n",
|
798 |
+
" Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
|
799 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
800 |
+
"\u001b[?25hCollecting python-multipart\n",
|
801 |
+
" Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
|
802 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
803 |
+
"\u001b[?25hRequirement already satisfied: pydantic in /usr/local/lib/python3.9/dist-packages (from gradio) (1.10.7)\n",
|
804 |
+
"Collecting semantic-version\n",
|
805 |
+
" Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
|
806 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from gradio) (1.5.3)\n",
|
807 |
+
"Collecting gradio-client>=0.1.3\n",
|
808 |
+
" Downloading gradio_client-0.1.3-py3-none-any.whl (286 kB)\n",
|
809 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m286.2/286.2 kB\u001b[0m \u001b[31m27.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
810 |
+
"\u001b[?25hCollecting aiofiles\n",
|
811 |
+
" Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n",
|
812 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from gradio) (3.1.2)\n",
|
813 |
+
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.4)\n",
|
814 |
+
"Requirement already satisfied: toolz in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
|
815 |
+
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n",
|
816 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from gradio-client>=0.1.3->gradio) (23.1)\n",
|
817 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.9/dist-packages (from gradio-client>=0.1.3->gradio) (2023.4.0)\n",
|
818 |
+
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub>=0.13.0->gradio) (4.65.0)\n",
|
819 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from huggingface-hub>=0.13.0->gradio) (3.11.0)\n",
|
820 |
+
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.9/dist-packages (from markdown-it-py[linkify]>=2.0.0->gradio) (0.1.2)\n",
|
821 |
+
"Collecting linkify-it-py<3,>=1\n",
|
822 |
+
" Downloading linkify_it_py-2.0.0-py3-none-any.whl (19 kB)\n",
|
823 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2.8.2)\n",
|
824 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2022.7.1)\n",
|
825 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (23.1.0)\n",
|
826 |
+
"Collecting async-timeout<5.0,>=4.0.0a3\n",
|
827 |
+
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
|
828 |
+
"Collecting multidict<7.0,>=4.5\n",
|
829 |
+
" Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n",
|
830 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m114.2/114.2 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
831 |
+
"\u001b[?25hCollecting frozenlist>=1.1.1\n",
|
832 |
+
" Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n",
|
833 |
+
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m158.8/158.8 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
834 |
+
"\u001b[?25hCollecting yarl<2.0,>=1.0\n",
|
835 |
+
" Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n",
|
836 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m264.6/264.6 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
837 |
+
"\u001b[?25hCollecting aiosignal>=1.1.2\n",
|
838 |
+
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
|
839 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (2.0.12)\n",
|
840 |
+
"Collecting starlette<0.27.0,>=0.26.1\n",
|
841 |
+
" Downloading starlette-0.26.1-py3-none-any.whl (66 kB)\n",
|
842 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m66.9/66.9 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
843 |
+
"\u001b[?25hCollecting httpcore<0.18.0,>=0.15.0\n",
|
844 |
+
" Downloading httpcore-0.17.0-py3-none-any.whl (70 kB)\n",
|
845 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m70.6/70.6 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
846 |
+
"\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (2022.12.7)\n",
|
847 |
+
"Requirement already satisfied: sniffio in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (1.3.0)\n",
|
848 |
+
"Requirement already satisfied: idna in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (3.4)\n",
|
849 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (3.0.9)\n",
|
850 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.0.7)\n",
|
851 |
+
"Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (5.12.0)\n",
|
852 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (4.39.3)\n",
|
853 |
+
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.4.4)\n",
|
854 |
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (0.11.0)\n",
|
855 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->gradio) (1.26.15)\n",
|
856 |
+
"Collecting h11>=0.8\n",
|
857 |
+
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
|
858 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
859 |
+
"\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.9/dist-packages (from uvicorn->gradio) (8.1.3)\n",
|
860 |
+
"Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.9/dist-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.6.2)\n",
|
861 |
+
"Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib->gradio) (3.15.0)\n",
|
862 |
+
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.9/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n",
|
863 |
+
"Collecting uc-micro-py\n",
|
864 |
+
" Downloading uc_micro_py-1.0.1-py3-none-any.whl (6.2 kB)\n",
|
865 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n",
|
866 |
+
"Building wheels for collected packages: ffmpy\n",
|
867 |
+
" Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
868 |
+
" Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4707 sha256=030fcfbd0063a8e91f56986ba5a3eaeb8d3d94a5b7f0a2c726f9367cfd7d2fbf\n",
|
869 |
+
" Stored in directory: /root/.cache/pip/wheels/91/e2/96/f676aa08bfd789328c6576cd0f1fde4a3d686703bb0c247697\n",
|
870 |
+
"Successfully built ffmpy\n",
|
871 |
+
"Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, semantic-version, python-multipart, orjson, multidict, h11, frozenlist, async-timeout, aiofiles, yarl, uvicorn, starlette, mdit-py-plugins, linkify-it-py, huggingface-hub, httpcore, aiosignal, httpx, fastapi, aiohttp, gradio-client, gradio\n",
|
872 |
+
"Successfully installed aiofiles-23.1.0 aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 fastapi-0.95.1 ffmpy-0.3.0 frozenlist-1.3.3 gradio-3.27.0 gradio-client-0.1.3 h11-0.14.0 httpcore-0.17.0 httpx-0.24.0 huggingface-hub-0.13.4 linkify-it-py-2.0.0 mdit-py-plugins-0.3.3 multidict-6.0.4 orjson-3.8.10 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.26.1 uc-micro-py-1.0.1 uvicorn-0.21.1 websockets-11.0.2 yarl-1.8.2\n"
|
873 |
+
]
|
874 |
+
}
|
875 |
+
]
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"cell_type": "code",
|
879 |
+
"source": [
|
880 |
+
"import gradio as gr"
|
881 |
+
],
|
882 |
+
"metadata": {
|
883 |
+
"id": "Q5a9SQbcqLH7"
|
884 |
+
},
|
885 |
+
"execution_count": 48,
|
886 |
+
"outputs": []
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"source": [
|
891 |
+
"\n",
|
892 |
+
"\n",
|
893 |
+
"inputs = gr.inputs.Image()\n",
|
894 |
+
"outputs = gr.outputs.Textbox()\n",
|
895 |
+
"iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, capture_session=True)\n",
|
896 |
+
"iface.launch()"
|
897 |
+
],
|
898 |
+
"metadata": {
|
899 |
+
"colab": {
|
900 |
+
"base_uri": "https://localhost:8080/",
|
901 |
+
"height": 775
|
902 |
+
},
|
903 |
+
"id": "sEsxRg9IqLue",
|
904 |
+
"outputId": "1ea4931d-4001-4c37-a0f9-97017b2e55a6"
|
905 |
+
},
|
906 |
+
"execution_count": 49,
|
907 |
+
"outputs": [
|
908 |
+
{
|
909 |
+
"output_type": "stream",
|
910 |
+
"name": "stderr",
|
911 |
+
"text": [
|
912 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/inputs.py:257: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
913 |
+
" warnings.warn(\n",
|
914 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
|
915 |
+
" warnings.warn(value)\n",
|
916 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/outputs.py:22: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
|
917 |
+
" warnings.warn(\n",
|
918 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `capture_session` parameter is deprecated, and it has no effect\n",
|
919 |
+
" warnings.warn(value)\n"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"output_type": "stream",
|
924 |
+
"name": "stdout",
|
925 |
+
"text": [
|
926 |
+
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
927 |
+
"Note: opening Chrome Inspector may crash demo inside Colab notebooks.\n",
|
928 |
+
"\n",
|
929 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"output_type": "display_data",
|
934 |
+
"data": {
|
935 |
+
"text/plain": [
|
936 |
+
"<IPython.core.display.Javascript object>"
|
937 |
+
],
|
938 |
+
"application/javascript": [
|
939 |
+
"(async (port, path, width, height, cache, element) => {\n",
|
940 |
+
" if (!google.colab.kernel.accessAllowed && !cache) {\n",
|
941 |
+
" return;\n",
|
942 |
+
" }\n",
|
943 |
+
" element.appendChild(document.createTextNode(''));\n",
|
944 |
+
" const url = await google.colab.kernel.proxyPort(port, {cache});\n",
|
945 |
+
"\n",
|
946 |
+
" const external_link = document.createElement('div');\n",
|
947 |
+
" external_link.innerHTML = `\n",
|
948 |
+
" <div style=\"font-family: monospace; margin-bottom: 0.5rem\">\n",
|
949 |
+
" Running on <a href=${new URL(path, url).toString()} target=\"_blank\">\n",
|
950 |
+
" https://localhost:${port}${path}\n",
|
951 |
+
" </a>\n",
|
952 |
+
" </div>\n",
|
953 |
+
" `;\n",
|
954 |
+
" element.appendChild(external_link);\n",
|
955 |
+
"\n",
|
956 |
+
" const iframe = document.createElement('iframe');\n",
|
957 |
+
" iframe.src = new URL(path, url).toString();\n",
|
958 |
+
" iframe.height = height;\n",
|
959 |
+
" iframe.allow = \"autoplay; camera; microphone; clipboard-read; clipboard-write;\"\n",
|
960 |
+
" iframe.width = width;\n",
|
961 |
+
" iframe.style.border = 0;\n",
|
962 |
+
" element.appendChild(iframe);\n",
|
963 |
+
" })(7860, \"/\", \"100%\", 500, false, window.element)"
|
964 |
+
]
|
965 |
+
},
|
966 |
+
"metadata": {}
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"output_type": "execute_result",
|
970 |
+
"data": {
|
971 |
+
"text/plain": []
|
972 |
+
},
|
973 |
+
"metadata": {},
|
974 |
+
"execution_count": 49
|
975 |
+
}
|
976 |
+
]
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"cell_type": "code",
|
980 |
+
"source": [
|
981 |
+
"import gradio as gr\n",
|
982 |
+
"import torch\n",
|
983 |
+
"import numpy as np\n",
|
984 |
+
"from PIL import Image\n",
|
985 |
+
"\n",
|
986 |
+
"# define the predict function\n",
|
987 |
+
"def predict(image):\n",
|
988 |
+
" # preprocess the image\n",
|
989 |
+
" image = np.array(image)\n",
|
990 |
+
" image = test_transform(image=image)['image']\n",
|
991 |
+
" image = image.unsqueeze(0).to(device)\n",
|
992 |
+
"\n",
|
993 |
+
" # get the model prediction\n",
|
994 |
+
" with torch.no_grad():\n",
|
995 |
+
" output = model(image)\n",
|
996 |
+
" pred = torch.sigmoid(output).cpu().numpy().squeeze()\n",
|
997 |
+
" \n",
|
998 |
+
" # return the prediction as a string\n",
|
999 |
+
" return f\"This image is {'AI generated' if pred > 0.75 else 'NOT AI generated'}\"\n",
|
1000 |
+
"\n",
|
1001 |
+
"# define the input interface with examples\n",
|
1002 |
+
"inputs = gr.inputs.Image(shape=(224, 224))\n",
|
1003 |
+
"outputs = gr.outputs.Textbox()\n",
|
1004 |
+
"examples = [\n",
|
1005 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/3.jpg'],\n",
|
1006 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/10.jpg'],\n",
|
1007 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/14.jpg'],\n",
|
1008 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg']\n",
|
1009 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4518.jpg'],\n",
|
1010 |
+
"]\n",
|
1011 |
+
"iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, examples=examples)\n",
|
1012 |
+
"\n",
|
1013 |
+
"# launch the gradio app\n",
|
1014 |
+
"iface.launch()"
|
1015 |
+
],
|
1016 |
+
"metadata": {
|
1017 |
+
"colab": {
|
1018 |
+
"base_uri": "https://localhost:8080/",
|
1019 |
+
"height": 428
|
1020 |
+
},
|
1021 |
+
"id": "nMuNn5FCvEuS",
|
1022 |
+
"outputId": "ad4760a5-9458-483a-b9bc-c655f0bf6429"
|
1023 |
+
},
|
1024 |
+
"execution_count": 55,
|
1025 |
+
"outputs": [
|
1026 |
+
{
|
1027 |
+
"output_type": "stream",
|
1028 |
+
"name": "stderr",
|
1029 |
+
"text": [
|
1030 |
+
"<>:28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n",
|
1031 |
+
"<>:28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n",
|
1032 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/inputs.py:257: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
1033 |
+
" warnings.warn(\n",
|
1034 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
|
1035 |
+
" warnings.warn(value)\n",
|
1036 |
+
"/usr/local/lib/python3.9/dist-packages/gradio/outputs.py:22: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
|
1037 |
+
" warnings.warn(\n",
|
1038 |
+
"<ipython-input-55-ad9875932060>:28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n",
|
1039 |
+
" ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg']\n"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"output_type": "error",
|
1044 |
+
"ename": "TypeError",
|
1045 |
+
"evalue": "ignored",
|
1046 |
+
"traceback": [
|
1047 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1048 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
1049 |
+
"\u001b[0;32m<ipython-input-55-ad9875932060>\u001b[0m in \u001b[0;36m<cell line: 25>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/10.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/14.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4518.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m ]\n",
|
1050 |
+
"\u001b[0;31mTypeError\u001b[0m: list indices must be integers or slices, not str"
|
1051 |
+
]
|
1052 |
+
}
|
1053 |
+
]
|
1054 |
+
}
|
1055 |
+
]
|
1056 |
+
}
|
Code/Training NB.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Code/Training_NB.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Code/app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import albumentations as A
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from albumentations.pytorch import ToTensorV2
|
11 |
+
from efficientnet_pytorch import EfficientNet
|
12 |
+
from PIL import Image
|
13 |
+
from sklearn import metrics
|
14 |
+
from torch import nn, optim
|
15 |
+
from torch.utils.data import DataLoader, Dataset
|
16 |
+
from torchvision import models
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
|
22 |
+
class Dataset(Dataset):
|
23 |
+
def __init__(self, root_images, root_file, transform=None):
|
24 |
+
self.root_images = root_images
|
25 |
+
self.root_file = root_file
|
26 |
+
self.transform = transform
|
27 |
+
self.file = pd.read_csv(root_file)
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return self.file.shape[0]
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
img_path = os.path.join(self.root_images, self.file["id"][index])
|
34 |
+
image = np.array(Image.open(img_path).convert("RGB"))
|
35 |
+
|
36 |
+
if self.transform is not None:
|
37 |
+
augmentations = self.transform(image=image)
|
38 |
+
image = augmentations["image"]
|
39 |
+
|
40 |
+
return image
|
41 |
+
|
42 |
+
|
43 |
+
learning_rate = 0.0001
|
44 |
+
batch_size = 32
|
45 |
+
epochs = 10
|
46 |
+
height = 224
|
47 |
+
width = 224
|
48 |
+
IMG = "AI images or Not/test"
|
49 |
+
FILE = "Data/sample_submission.csv"
|
50 |
+
|
51 |
+
|
52 |
+
def get_loader(image, file, batch_size, test_transform):
|
53 |
+
|
54 |
+
test_ds = Dataset(image, file, test_transform)
|
55 |
+
test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
|
56 |
+
|
57 |
+
return test_loader
|
58 |
+
|
59 |
+
|
60 |
+
normalize = A.Normalize(
|
61 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.255], max_pixel_value=255.0
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
test_transform = A.Compose(
|
66 |
+
[A.Resize(width=width, height=height), normalize, ToTensorV2()]
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class Net(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
self.model = EfficientNet.from_pretrained("efficientnet-b4")
|
74 |
+
self.fct = nn.Linear(1000, 1)
|
75 |
+
|
76 |
+
def forward(self, img):
|
77 |
+
x = self.model(img)
|
78 |
+
# print(x.shape)
|
79 |
+
x = self.fct(x)
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
def load_checkpoint(checkpoint, model, optimizer):
|
84 |
+
print("====> Loading...")
|
85 |
+
model.load_state_dict(checkpoint["state_dict"])
|
86 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
87 |
+
|
88 |
+
|
89 |
+
# test = pd.read_csv(FILE)
|
90 |
+
# test
|
91 |
+
|
92 |
+
model = Net().to(device)
|
93 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
94 |
+
|
95 |
+
checkpoint_file = "Checkpoint/baseline_V0.pth.tar"
|
96 |
+
test_loader = get_loader(IMG, FILE, batch_size, test_transform)
|
97 |
+
checkpoint = torch.load(checkpoint_file, map_location=torch.device("cpu"))
|
98 |
+
load_checkpoint(checkpoint, model, optimizer)
|
99 |
+
|
100 |
+
model.eval()
|
101 |
+
|
102 |
+
|
103 |
+
# define the predict function
|
104 |
+
def predict(image):
|
105 |
+
# preprocess the image
|
106 |
+
image = np.array(image)
|
107 |
+
image = test_transform(image=image)["image"]
|
108 |
+
image = image.unsqueeze(0).to(device)
|
109 |
+
|
110 |
+
# get the model prediction
|
111 |
+
with torch.no_grad():
|
112 |
+
output = model(image)
|
113 |
+
pred = torch.sigmoid(output).cpu().numpy().squeeze()
|
114 |
+
|
115 |
+
# check if prediction is AI generated, not AI generated, or uncertain
|
116 |
+
if pred >= 0.6:
|
117 |
+
prediction = "AI generated"
|
118 |
+
confidence = pred
|
119 |
+
elif pred <= 0.4:
|
120 |
+
prediction = "NOT AI generated"
|
121 |
+
confidence = 1 - pred
|
122 |
+
else:
|
123 |
+
prediction = "uncertain"
|
124 |
+
confidence = abs(0.5 - pred) * 2
|
125 |
+
|
126 |
+
# return the prediction and confidence as a string
|
127 |
+
return f"This image is {prediction} with {confidence:.2%} confidence."
|
128 |
+
|
129 |
+
|
130 |
+
# define the input interface with examples
|
131 |
+
inputs = gr.inputs.Image(shape=(224, 224))
|
132 |
+
outputs = gr.outputs.Textbox()
|
133 |
+
examples = [
|
134 |
+
["Data/train/3.jpg"],
|
135 |
+
["Data/train/10.jpg"],
|
136 |
+
["Data/train/14.jpg"],
|
137 |
+
["Data/train/4515.jpg"],
|
138 |
+
["Data/train/4518.jpg"],
|
139 |
+
["Data/train/6122.jpg"],
|
140 |
+
["Data/train/6123.jpg"],
|
141 |
+
["Data/train/6124.jpg"],
|
142 |
+
["Data/train/6125.jpg"],
|
143 |
+
["Data/train/7461.jpg"],
|
144 |
+
["Data/train/7462.jpg"],
|
145 |
+
["Data/train/7463.jpg"],
|
146 |
+
["Data/train/7464.jpg"],
|
147 |
+
["Data/train/7465.jpg"],
|
148 |
+
["Data/train/8546.jpg"],
|
149 |
+
["Data/train/8543.jpg"],
|
150 |
+
["Data/train/9120.jpg"],
|
151 |
+
["Data/train/10120.jpg"],
|
152 |
+
]
|
153 |
+
iface = gr.Interface(
|
154 |
+
fn=predict,
|
155 |
+
inputs=inputs,
|
156 |
+
outputs=outputs,
|
157 |
+
title="AI image detector π",
|
158 |
+
description="Check if an image is AI generated or real.",
|
159 |
+
examples=examples,
|
160 |
+
)
|
161 |
+
|
162 |
+
# launch the gradio app
|
163 |
+
iface.launch()
|
Code/test.ipynb
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Token is valid.\n",
|
13 |
+
"Your token has been saved in your configured git credential helpers (manager-core).\n",
|
14 |
+
"Your token has been saved to C:\\Users\\Oussama\\.cache\\huggingface\\token\n",
|
15 |
+
"Login successful\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"from huggingface_hub import login\n",
|
21 |
+
"login()"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"application/vnd.jupyter.widget-view+json": {
|
32 |
+
"model_id": "e5eb52f9282f43cfa4f06b1d9c6dc08b",
|
33 |
+
"version_major": 2,
|
34 |
+
"version_minor": 0
|
35 |
+
},
|
36 |
+
"text/plain": [
|
37 |
+
"Downloading readme: 0%| | 0.00/1.24k [00:00<?, ?B/s]"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"metadata": {},
|
41 |
+
"output_type": "display_data"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "stdout",
|
45 |
+
"output_type": "stream",
|
46 |
+
"text": [
|
47 |
+
"Downloading and preparing dataset None/None to C:/Users/Oussama/.cache/huggingface/datasets/competitions___parquet/competitions--aiornot-759454878caed5d9/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"application/vnd.jupyter.widget-view+json": {
|
53 |
+
"model_id": "37ae63ab36cc448e90aa292609f4e5d4",
|
54 |
+
"version_major": 2,
|
55 |
+
"version_minor": 0
|
56 |
+
},
|
57 |
+
"text/plain": [
|
58 |
+
"Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "display_data"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"application/vnd.jupyter.widget-view+json": {
|
67 |
+
"model_id": "e208b22a102847b4862d336b32cce3e1",
|
68 |
+
"version_major": 2,
|
69 |
+
"version_minor": 0
|
70 |
+
},
|
71 |
+
"text/plain": [
|
72 |
+
"Downloading data: 0%| | 0.00/354M [00:00<?, ?B/s]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "display_data"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"application/vnd.jupyter.widget-view+json": {
|
81 |
+
"model_id": "c31d5357bf9c44e99b19820ea10ad70a",
|
82 |
+
"version_major": 2,
|
83 |
+
"version_minor": 0
|
84 |
+
},
|
85 |
+
"text/plain": [
|
86 |
+
"Downloading data: 0%| | 0.00/356M [00:00<?, ?B/s]"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "display_data"
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"data": {
|
94 |
+
"application/vnd.jupyter.widget-view+json": {
|
95 |
+
"model_id": "b7de3daec8a54b28a07cd580734f4bf4",
|
96 |
+
"version_major": 2,
|
97 |
+
"version_minor": 0
|
98 |
+
},
|
99 |
+
"text/plain": [
|
100 |
+
"Downloading data: 0%| | 0.00/415M [00:00<?, ?B/s]"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "display_data"
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"application/vnd.jupyter.widget-view+json": {
|
109 |
+
"model_id": "67b76cdca655426d9174aa7655345ecb",
|
110 |
+
"version_major": 2,
|
111 |
+
"version_minor": 0
|
112 |
+
},
|
113 |
+
"text/plain": [
|
114 |
+
"Downloading data: 0%| | 0.00/418M [00:00<?, ?B/s]"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
"metadata": {},
|
118 |
+
"output_type": "display_data"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"data": {
|
122 |
+
"application/vnd.jupyter.widget-view+json": {
|
123 |
+
"model_id": "373dd6818e5c4500b9d48de516bcb427",
|
124 |
+
"version_major": 2,
|
125 |
+
"version_minor": 0
|
126 |
+
},
|
127 |
+
"text/plain": [
|
128 |
+
"Downloading data: 0%| | 0.00/416M [00:00<?, ?B/s]"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"metadata": {},
|
132 |
+
"output_type": "display_data"
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"data": {
|
136 |
+
"application/vnd.jupyter.widget-view+json": {
|
137 |
+
"model_id": "9fc356325be34db1844de564ee0395fc",
|
138 |
+
"version_major": 2,
|
139 |
+
"version_minor": 0
|
140 |
+
},
|
141 |
+
"text/plain": [
|
142 |
+
"Downloading data: 0%| | 0.00/416M [00:00<?, ?B/s]"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "display_data"
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"application/vnd.jupyter.widget-view+json": {
|
151 |
+
"model_id": "8d8d0259ea1840d38f316bfc3809fa44",
|
152 |
+
"version_major": 2,
|
153 |
+
"version_minor": 0
|
154 |
+
},
|
155 |
+
"text/plain": [
|
156 |
+
"Extracting data files: 0%| | 0/2 [00:00<?, ?it/s]"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
"metadata": {},
|
160 |
+
"output_type": "display_data"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"data": {
|
164 |
+
"application/vnd.jupyter.widget-view+json": {
|
165 |
+
"model_id": "1780ace548794a58b318e723ae297b50",
|
166 |
+
"version_major": 2,
|
167 |
+
"version_minor": 0
|
168 |
+
},
|
169 |
+
"text/plain": [
|
170 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
"metadata": {},
|
174 |
+
"output_type": "display_data"
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"data": {
|
178 |
+
"application/vnd.jupyter.widget-view+json": {
|
179 |
+
"model_id": "fbd137787e1340bfaef5b62f6fbc7556",
|
180 |
+
"version_major": 2,
|
181 |
+
"version_minor": 0
|
182 |
+
},
|
183 |
+
"text/plain": [
|
184 |
+
"Generating test split: 0 examples [00:00, ? examples/s]"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
"metadata": {},
|
188 |
+
"output_type": "display_data"
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"name": "stdout",
|
192 |
+
"output_type": "stream",
|
193 |
+
"text": [
|
194 |
+
"Dataset parquet downloaded and prepared to C:/Users/Oussama/.cache/huggingface/datasets/competitions___parquet/competitions--aiornot-759454878caed5d9/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"data": {
|
199 |
+
"application/vnd.jupyter.widget-view+json": {
|
200 |
+
"model_id": "2087104741e1465d9fc4b033d5cd8bdf",
|
201 |
+
"version_major": 2,
|
202 |
+
"version_minor": 0
|
203 |
+
},
|
204 |
+
"text/plain": [
|
205 |
+
" 0%| | 0/2 [00:00<?, ?it/s]"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "display_data"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"from datasets import load_dataset\n",
|
214 |
+
"\n",
|
215 |
+
"# If the dataset is gated/private, make sure you have run huggingface-cli login\n",
|
216 |
+
"dataset = load_dataset(\"competitions/aiornot\")"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": null,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": []
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [],
|
231 |
+
"source": []
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"metadata": {
|
235 |
+
"kernelspec": {
|
236 |
+
"display_name": "Python 3",
|
237 |
+
"language": "python",
|
238 |
+
"name": "python3"
|
239 |
+
},
|
240 |
+
"language_info": {
|
241 |
+
"codemirror_mode": {
|
242 |
+
"name": "ipython",
|
243 |
+
"version": 3
|
244 |
+
},
|
245 |
+
"file_extension": ".py",
|
246 |
+
"mimetype": "text/x-python",
|
247 |
+
"name": "python",
|
248 |
+
"nbconvert_exporter": "python",
|
249 |
+
"pygments_lexer": "ipython3",
|
250 |
+
"version": "3.10.11"
|
251 |
+
},
|
252 |
+
"orig_nbformat": 4
|
253 |
+
},
|
254 |
+
"nbformat": 4,
|
255 |
+
"nbformat_minor": 2
|
256 |
+
}
|