{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU", "gpuClass": "standard" }, "cells": [ { "cell_type": "code", "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "L6gytYO-DHMK", "outputId": "b0c87fe1-77a4-45c7-8ea4-b8211cc0c4a7" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" ] } ], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "cell_type": "code", "source": [ "%pip install efficientnet-pytorch" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OoBBN22XDRNG", "outputId": "c63a35aa-a077-44c7-93e5-bc9ba9732770" }, "execution_count": 33, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: efficientnet-pytorch in /usr/local/lib/python3.9/dist-packages (0.7.1)\n", "Requirement already satisfied: torch in /usr/local/lib/python3.9/dist-packages (from efficientnet-pytorch) (2.0.0+cu118)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (4.5.0)\n", "Requirement already satisfied: sympy in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (1.11.1)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.11.0)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.1)\n", "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (2.0.0)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from torch->efficientnet-pytorch) (3.1.2)\n", "Requirement already satisfied: lit in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch->efficientnet-pytorch) (16.0.1)\n", "Requirement already satisfied: cmake in /usr/local/lib/python3.9/dist-packages (from triton==2.0.0->torch->efficientnet-pytorch) (3.25.2)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.9/dist-packages (from jinja2->torch->efficientnet-pytorch) (2.1.2)\n", "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.9/dist-packages (from sympy->torch->efficientnet-pytorch) (1.3.0)\n" ] } ] }, { "cell_type": "code", "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import os\n", "from PIL import Image\n", "import torch\n", "from torch import nn, optim\n", "import torch.nn.functional as F\n", "from torch.utils.data import DataLoader, Dataset\n", "import albumentations as A\n", "from albumentations.pytorch import ToTensorV2 \n", "from tqdm import tqdm\n", "from torchvision import models\n", "from efficientnet_pytorch import EfficientNet\n", "from sklearn import metrics" ], "metadata": { "id": "phJgllqcDSuH" }, "execution_count": 34, "outputs": [] }, { "cell_type": "code", "source": [ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" ], "metadata": { "id": "DyUTFa31DTdp" }, "execution_count": 35, "outputs": [] }, { "cell_type": "code", "source": [ "class Dataset(Dataset):\n", " def __init__(self, root_images, root_file, transform = None):\n", " self.root_images = root_images\n", " self.root_file = root_file\n", " self.transform = transform\n", " self.file = pd.read_csv(root_file)\n", "\n", "\n", " def __len__(self):\n", " return self.file.shape[0]\n", " \n", " def __getitem__(self,index):\n", " img_path = os.path.join(self.root_images, self.file['id'][index])\n", " image = np.array(Image.open(img_path).convert('RGB'))\n", " \n", " if self.transform is not None:\n", " augmentations = self.transform(image = image)\n", " image = augmentations['image'] \n", " \n", " return image" ], "metadata": { "id": "kTk-mXXUDUUA" }, "execution_count": 36, "outputs": [] }, { "cell_type": "code", "source": [ "learning_rate = 0.0001\n", "batch_size = 32\n", "epochs = 10\n", "height = 224 \n", "width = 224\n", "IMG = '/content/drive/MyDrive/Colab Notebooks/AI images or Not/test'\n", "FILE = '/content/sample_submission.csv'" ], "metadata": { "id": "HXEpa4PlDU85" }, "execution_count": 37, "outputs": [] }, { "cell_type": "code", "source": [ "def get_loader(image, file, batch_size, test_transform):\n", " \n", " test_ds = Dataset(image , file, test_transform)\n", " test_loader = DataLoader(test_ds, batch_size= batch_size, shuffle= False)\n", "\n", "\n", "\n", " return test_loader " ], "metadata": { "id": "i-VOTQp2DVbK" }, "execution_count": 38, "outputs": [] }, { "cell_type": "code", "source": [ "normalize = A.Normalize(\n", " mean = [0.485 , 0.456 , 0.406],\n", " std = [0.229 , 0.224, 0.255],\n", " max_pixel_value= 255.0\n", ")\n", "\n", "\n", "test_transform = A.Compose(\n", " [A.Resize(width=width , height= height),\n", " normalize,\n", " ToTensorV2()\n", " ]\n", ")\n" ], "metadata": { "id": "RD4GnrT6DVpr" }, "execution_count": 39, "outputs": [] }, { "cell_type": "code", "source": [ "class Net(nn.Module):\n", " def __init__(self):\n", " super().__init__()\n", " self.model = EfficientNet.from_pretrained('efficientnet-b4')\n", " self.fct = nn.Linear(1000,1)\n", " \n", " def forward(self,img):\n", " x = self.model(img)\n", " # print(x.shape)\n", " x = self.fct(x)\n", " return x" ], "metadata": { "id": "HYH0pBe9DV3M" }, "execution_count": 40, "outputs": [] }, { "cell_type": "code", "source": [ "def load_checkpoint(checkpoint, model, optimizer):\n", " print('====> Loading...')\n", " model.load_state_dict(checkpoint['state_dict'])\n", " optimizer.load_state_dict(checkpoint['optimizer'])" ], "metadata": { "id": "1Ype_u3qDV-n" }, "execution_count": 41, "outputs": [] }, { "cell_type": "code", "source": [ "test = pd.read_csv(FILE)\n", "test" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "Jf_Is1qDGz-W", "outputId": "cf79a4c0-2bca-473c-886e-726d7956015d" }, "execution_count": 42, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " id label\n", "0 0.jpg 0\n", "1 1.jpg 0\n", "2 10.jpg 0\n", "3 100.jpg 0\n", "4 1000.jpg 0\n", "... ... ...\n", "43437 9995.jpg 0\n", "43438 9996.jpg 0\n", "43439 9997.jpg 0\n", "43440 9998.jpg 0\n", "43441 9999.jpg 0\n", "\n", "[43442 rows x 2 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idlabel
00.jpg0
11.jpg0
210.jpg0
3100.jpg0
41000.jpg0
.........
434379995.jpg0
434389996.jpg0
434399997.jpg0
434409998.jpg0
434419999.jpg0
\n", "

43442 rows × 2 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 42 } ] }, { "cell_type": "code", "source": [ "model = Net().to(device)\n", "optimizer = optim.Adam(model.parameters(), lr= learning_rate)\n", "\n", "checkpoint_file = '/content/drive/MyDrive/Colab Notebooks/AI images or Not/baseline_V0.pth.tar'\n", "test_loader = get_loader(IMG, FILE, batch_size, test_transform)\n", "checkpoint = torch.load(checkpoint_file, map_location=torch.device('cpu'))\n", "load_checkpoint(checkpoint, model, optimizer)\n", "\n", "model.eval()\n", "k = 0\n", "for x in tqdm(test_loader):\n", " x = x.to(device).to(torch.float32)\n", " p = torch.sigmoid(model(x)).cpu().detach().numpy()\n", "\n", " for i in range(len(p)):\n", " test['label'][k] = (p[i] > 0.75).astype('float')\n", " k += 1" ], "metadata": { "id": "qWB6WzrlDWD7", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "52e74e4b-96e7-40e7-d1b3-a22c7b70098d" }, "execution_count": 43, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Loaded pretrained weights for efficientnet-b4\n", "====> Loading...\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ " 0%| | 0/1358 [00:00:16: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test['label'][k] = (p[i] > 0.75).astype('float')\n", "100%|██████████| 1358/1358 [4:56:02<00:00, 13.08s/it]\n" ] } ] }, { "cell_type": "code", "source": [ "test" ], "metadata": { "id": "-zS8tYPBDWG7", "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "outputId": "4a4c0b81-ff75-4ed7-a5df-6f98644f03e2" }, "execution_count": 44, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " id label\n", "0 0.jpg 0\n", "1 1.jpg 0\n", "2 10.jpg 0\n", "3 100.jpg 1\n", "4 1000.jpg 0\n", "... ... ...\n", "43437 9995.jpg 1\n", "43438 9996.jpg 0\n", "43439 9997.jpg 0\n", "43440 9998.jpg 0\n", "43441 9999.jpg 1\n", "\n", "[43442 rows x 2 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idlabel
00.jpg0
11.jpg0
210.jpg0
3100.jpg1
41000.jpg0
.........
434379995.jpg1
434389996.jpg0
434399997.jpg0
434409998.jpg0
434419999.jpg1
\n", "

43442 rows × 2 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 44 } ] }, { "cell_type": "code", "source": [ "test.to_csv('sub.csv', index=False)" ], "metadata": { "id": "nX_vnorKDWKK" }, "execution_count": 45, "outputs": [] }, { "cell_type": "code", "source": [], "metadata": { "id": "JmJa1KolDWM5" }, "execution_count": 45, "outputs": [] }, { "cell_type": "code", "source": [ "def predict(image):\n", " image = np.array(image)\n", " transform = A.Compose(\n", " [A.Resize(width=width, height=height),\n", " normalize,\n", " ToTensorV2()\n", " ]\n", " )\n", " image = transform(image=image)[\"image\"].unsqueeze(0).to(device).to(torch.float32)\n", " with torch.no_grad():\n", " model.eval()\n", " output = torch.sigmoid(model(image))\n", " label = (output > 0.75).item()\n", " return \"AI Image\" if label else \"Not AI Image\"" ], "metadata": { "id": "TKs8s0TyDWP0" }, "execution_count": 46, "outputs": [] }, { "cell_type": "code", "source": [ "%pip install gradio" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k7bGi6MqqO-r", "outputId": "120d9571-3381-418a-9056-ff8b84199ca7" }, "execution_count": 47, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting gradio\n", " Downloading gradio-3.27.0-py3-none-any.whl (17.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m60.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.9/dist-packages (from gradio) (3.7.1)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from gradio) (1.22.4)\n", "Requirement already satisfied: markdown-it-py[linkify]>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from gradio) (2.2.0)\n", "Collecting aiohttp\n", " Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m54.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting orjson\n", " Downloading orjson-3.8.10-cp39-cp39-manylinux_2_28_x86_64.whl (140 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.5/140.5 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.9/dist-packages (from gradio) (8.4.0)\n", "Collecting ffmpy\n", " Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: markupsafe in /usr/local/lib/python3.9/dist-packages (from gradio) (2.1.2)\n", "Collecting huggingface-hub>=0.13.0\n", " Downloading huggingface_hub-0.13.4-py3-none-any.whl (200 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m200.1/200.1 kB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from gradio) (2.27.1)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from gradio) (4.5.0)\n", "Requirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.9/dist-packages (from gradio) (4.2.2)\n", "Collecting fastapi\n", " Downloading fastapi-0.95.1-py3-none-any.whl (56 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.0/57.0 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting httpx\n", " Downloading httpx-0.24.0-py3-none-any.whl (75 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.3/75.3 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting uvicorn\n", " Downloading uvicorn-0.21.1-py3-none-any.whl (57 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.8/57.8 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting websockets>=10.0\n", " Downloading websockets-11.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.7/129.7 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting pydub\n", " Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.9/dist-packages (from gradio) (6.0)\n", "Collecting mdit-py-plugins<=0.3.3\n", " Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting python-multipart\n", " Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pydantic in /usr/local/lib/python3.9/dist-packages (from gradio) (1.10.7)\n", "Collecting semantic-version\n", " Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from gradio) (1.5.3)\n", "Collecting gradio-client>=0.1.3\n", " Downloading gradio_client-0.1.3-py3-none-any.whl (286 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m286.2/286.2 kB\u001b[0m \u001b[31m27.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting aiofiles\n", " Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.9/dist-packages (from gradio) (3.1.2)\n", "Requirement already satisfied: entrypoints in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.4)\n", "Requirement already satisfied: toolz in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n", "Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.9/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from gradio-client>=0.1.3->gradio) (23.1)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.9/dist-packages (from gradio-client>=0.1.3->gradio) (2023.4.0)\n", "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub>=0.13.0->gradio) (4.65.0)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from huggingface-hub>=0.13.0->gradio) (3.11.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.9/dist-packages (from markdown-it-py[linkify]>=2.0.0->gradio) (0.1.2)\n", "Collecting linkify-it-py<3,>=1\n", " Downloading linkify_it_py-2.0.0-py3-none-any.whl (19 kB)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->gradio) (2022.7.1)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (23.1.0)\n", "Collecting async-timeout<5.0,>=4.0.0a3\n", " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", "Collecting multidict<7.0,>=4.5\n", " Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.2/114.2 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting frozenlist>=1.1.1\n", " Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m158.8/158.8 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting yarl<2.0,>=1.0\n", " Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m264.6/264.6 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting aiosignal>=1.1.2\n", " Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n", "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->gradio) (2.0.12)\n", "Collecting starlette<0.27.0,>=0.26.1\n", " Downloading starlette-0.26.1-py3-none-any.whl (66 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.9/66.9 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting httpcore<0.18.0,>=0.15.0\n", " Downloading httpcore-0.17.0-py3-none-any.whl (70 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.6/70.6 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (2022.12.7)\n", "Requirement already satisfied: sniffio in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (1.3.0)\n", "Requirement already satisfied: idna in /usr/local/lib/python3.9/dist-packages (from httpx->gradio) (3.4)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (3.0.9)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.0.7)\n", "Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (5.12.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (4.39.3)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (1.4.4)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib->gradio) (0.11.0)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->gradio) (1.26.15)\n", "Collecting h11>=0.8\n", " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.9/dist-packages (from uvicorn->gradio) (8.1.3)\n", "Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.9/dist-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.6.2)\n", "Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib->gradio) (3.15.0)\n", "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.9/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n", "Collecting uc-micro-py\n", " Downloading uc_micro_py-1.0.1-py3-none-any.whl (6.2 kB)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n", "Building wheels for collected packages: ffmpy\n", " Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4707 sha256=030fcfbd0063a8e91f56986ba5a3eaeb8d3d94a5b7f0a2c726f9367cfd7d2fbf\n", " Stored in directory: /root/.cache/pip/wheels/91/e2/96/f676aa08bfd789328c6576cd0f1fde4a3d686703bb0c247697\n", "Successfully built ffmpy\n", "Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, semantic-version, python-multipart, orjson, multidict, h11, frozenlist, async-timeout, aiofiles, yarl, uvicorn, starlette, mdit-py-plugins, linkify-it-py, huggingface-hub, httpcore, aiosignal, httpx, fastapi, aiohttp, gradio-client, gradio\n", "Successfully installed aiofiles-23.1.0 aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 fastapi-0.95.1 ffmpy-0.3.0 frozenlist-1.3.3 gradio-3.27.0 gradio-client-0.1.3 h11-0.14.0 httpcore-0.17.0 httpx-0.24.0 huggingface-hub-0.13.4 linkify-it-py-2.0.0 mdit-py-plugins-0.3.3 multidict-6.0.4 orjson-3.8.10 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.26.1 uc-micro-py-1.0.1 uvicorn-0.21.1 websockets-11.0.2 yarl-1.8.2\n" ] } ] }, { "cell_type": "code", "source": [ "import gradio as gr" ], "metadata": { "id": "Q5a9SQbcqLH7" }, "execution_count": 48, "outputs": [] }, { "cell_type": "code", "source": [ "\n", "\n", "inputs = gr.inputs.Image()\n", "outputs = gr.outputs.Textbox()\n", "iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, capture_session=True)\n", "iface.launch()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 775 }, "id": "sEsxRg9IqLue", "outputId": "1ea4931d-4001-4c37-a0f9-97017b2e55a6" }, "execution_count": 49, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.9/dist-packages/gradio/inputs.py:257: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n", " warnings.warn(\n", "/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n", " warnings.warn(value)\n", "/usr/local/lib/python3.9/dist-packages/gradio/outputs.py:22: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n", " warnings.warn(\n", "/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `capture_session` parameter is deprecated, and it has no effect\n", " warnings.warn(value)\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n", "Note: opening Chrome Inspector may crash demo inside Colab notebooks.\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "application/javascript": [ "(async (port, path, width, height, cache, element) => {\n", " if (!google.colab.kernel.accessAllowed && !cache) {\n", " return;\n", " }\n", " element.appendChild(document.createTextNode(''));\n", " const url = await google.colab.kernel.proxyPort(port, {cache});\n", "\n", " const external_link = document.createElement('div');\n", " external_link.innerHTML = `\n", "
\n", " Running on \n", " https://localhost:${port}${path}\n", " \n", "
\n", " `;\n", " element.appendChild(external_link);\n", "\n", " const iframe = document.createElement('iframe');\n", " iframe.src = new URL(path, url).toString();\n", " iframe.height = height;\n", " iframe.allow = \"autoplay; camera; microphone; clipboard-read; clipboard-write;\"\n", " iframe.width = width;\n", " iframe.style.border = 0;\n", " element.appendChild(iframe);\n", " })(7860, \"/\", \"100%\", 500, false, window.element)" ] }, "metadata": {} }, { "output_type": "execute_result", "data": { "text/plain": [] }, "metadata": {}, "execution_count": 49 } ] }, { "cell_type": "code", "source": [ "import gradio as gr\n", "import torch\n", "import numpy as np\n", "from PIL import Image\n", "\n", "# define the predict function\n", "def predict(image):\n", " # preprocess the image\n", " image = np.array(image)\n", " image = test_transform(image=image)['image']\n", " image = image.unsqueeze(0).to(device)\n", "\n", " # get the model prediction\n", " with torch.no_grad():\n", " output = model(image)\n", " pred = torch.sigmoid(output).cpu().numpy().squeeze()\n", " \n", " # return the prediction as a string\n", " return f\"This image is {'AI generated' if pred > 0.75 else 'NOT AI generated'}\"\n", "\n", "# define the input interface with examples\n", "inputs = gr.inputs.Image(shape=(224, 224))\n", "outputs = gr.outputs.Textbox()\n", "examples = [\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/3.jpg'],\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/10.jpg'],\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/14.jpg'],\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg']\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4518.jpg'],\n", "]\n", "iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, examples=examples)\n", "\n", "# launch the gradio app\n", "iface.launch()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 428 }, "id": "nMuNn5FCvEuS", "outputId": "ad4760a5-9458-483a-b9bc-c655f0bf6429" }, "execution_count": 55, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n", "<>:28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n", "/usr/local/lib/python3.9/dist-packages/gradio/inputs.py:257: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n", " warnings.warn(\n", "/usr/local/lib/python3.9/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n", " warnings.warn(value)\n", "/usr/local/lib/python3.9/dist-packages/gradio/outputs.py:22: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n", " warnings.warn(\n", ":28: SyntaxWarning: list indices must be integers or slices, not str; perhaps you missed a comma?\n", " ['/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg']\n" ] }, { "output_type": "error", "ename": "TypeError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/10.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/14.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4515.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/AI images or Not/train/4518.jpg'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m ]\n", "\u001b[0;31mTypeError\u001b[0m: list indices must be integers or slices, not str" ] } ] } ] }