File size: 3,363 Bytes
922765a
37e4010
 
d6b0a9b
 
922765a
cce0194
37e4010
cce0194
 
922765a
 
 
 
d6b0a9b
 
 
 
 
 
404e508
d6b0a9b
37e4010
 
 
 
d6b0a9b
37e4010
 
 
 
 
 
 
 
 
 
 
 
cce0194
37e4010
cce0194
d6b0a9b
922765a
 
 
 
 
 
 
d6b0a9b
4b77577
 
 
 
922765a
4b77577
922765a
 
 
37e4010
 
cce0194
37e4010
 
922765a
 
 
d6b0a9b
 
 
 
 
 
 
 
 
 
 
404e508
d6b0a9b
37e4010
d6b0a9b
922765a
404e508
d6b0a9b
37e4010
922765a
 
 
 
cce0194
922765a
c9bc402
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import logging

# Initialize FastAPI
app = FastAPI()

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
    "Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
    "Content-Type": "application/json"
}

def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
    return {
        "id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
        "object": "chat.completion",
        "created": int(datetime.datetime.now().timestamp()),
        "model": "Qwen/Qwen2.5-Coder-32B",
        "choices": [{
            "index": 0,
            "message": {
                "role": "assistant",
                "content": response_text
            },
            "finish_reason": "stop"
        }],
        "usage": {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens
        }
    }

async def query_model(payload):
    try:
        response = requests.post(API_URL, headers=headers, json=payload)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        logger.error(f"Request failed: {e}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/status")
async def status():
    try:
        response_text = "it's working"
        return JSONResponse(content=format_chat_response(response_text))
    except Exception as e:
        logger.error(f"Status check failed: {e}")
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        if not messages:
            raise HTTPException(status_code=400, detail="Messages are required")

        payload = {
            "inputs": {
                "messages": messages
            },
            "parameters": {
                "max_new_tokens": data.get("max_tokens", 2048),
                "temperature": data.get("temperature", 0.7),
                "top_p": data.get("top_p", 0.95),
                "do_sample": True
            }
        }
        
        response = await query_model(payload)
        
        if isinstance(response, dict) and "error" in response:
            raise HTTPException(status_code=500, detail=response["error"])
        
        response_text = response[0]["generated_text"]
        
        return JSONResponse(content=format_chat_response(response_text))
    except HTTPException as e:
        logger.error(f"Chat completion failed: {e.detail}")
        raise e
    except Exception as e:
        logger.error(f"Unexpected error: {e}")
        raise HTTPException(status_code=500, detail=str(e))


def chat_interface(messages):
    chat_history = []

# Create Gradio interface
def gradio_app():
    #return gr.chat_interface(gr.Chatbot(placeholder="placeholder"), type="messages", value=[])
    return gr.ChatInterface(chat_interface, type="messages")

# Mount both FastAPI and Gradio