Spaces:
Runtime error
Runtime error
File size: 4,364 Bytes
37e4010 d6b0a9b 1fb73a8 cce0194 37e4010 cce0194 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 37e4010 cce0194 37e4010 cce0194 d6b0a9b 37e4010 cce0194 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 97b4be5 37e4010 cce0194 37e4010 cce0194 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 97b4be5 37e4010 1fb73a8 97b4be5 1fb73a8 97b4be5 37e4010 97b4be5 37e4010 97b4be5 37e4010 404e508 37e4010 97b4be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(response_text)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
def chat_interface(message, chat_history):
if message.strip() == "":
return chat_history
try:
# Format the message history in the OpenAI style
messages = []
for msg in chat_history:
messages.append({"role": "user", "content": msg[0]})
if msg[1] is not None:
messages.append({"role": "assistant", "content": msg[1]})
# Add the current message
messages.append({"role": "user", "content": message})
# Get response
response = generate_response(messages)
# Update history in the new format
chat_history.append((message, response))
return chat_history
except Exception as e:
chat_history.append((message, f"Error: {str(e)}"))
return chat_history
# Create Gradio interface with new message format
demo = gr.ChatInterface(
fn=chat_interface,
title="Qwen2.5-Coder-32B Chat",
description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API",
examples=["Hello! Can you help me with coding?",
"Write a simple Python function to calculate factorial"],
retry_btn="Retry",
undo_btn="Undo last message",
clear_btn="Clear conversation",
)
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |