File size: 4,088 Bytes
37e4010
 
 
 
d6b0a9b
 
 
1fb73a8
cce0194
37e4010
cce0194
 
d6b0a9b
 
 
 
 
 
404e508
d6b0a9b
37e4010
 
 
 
d6b0a9b
37e4010
 
 
 
 
 
 
 
 
 
 
 
cce0194
37e4010
cce0194
d6b0a9b
 
 
 
37e4010
 
cce0194
37e4010
 
 
d6b0a9b
 
 
 
 
 
 
 
 
 
 
404e508
d6b0a9b
37e4010
d6b0a9b
 
 
 
 
404e508
d6b0a9b
37e4010
 
97b4be5
37e4010
cce0194
37e4010
 
 
 
cce0194
1fb73a8
d6b0a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb73a8
d6b0a9b
 
1fb73a8
d6b0a9b
1fb73a8
97b4be5
 
 
37e4010
1fb73a8
97b4be5
 
 
 
 
 
 
 
 
 
 
 
1fb73a8
97b4be5
 
37e4010
dc3ffec
 
 
37e4010
97b4be5
dc3ffec
 
 
 
37e4010
404e508
37e4010
97b4be5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio

# Initialize FastAPI
app = FastAPI()

# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
    "Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
    "Content-Type": "application/json"
}

def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
    return {
        "id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
        "object": "chat.completion",
        "created": int(datetime.datetime.now().timestamp()),
        "model": "Qwen/Qwen2.5-Coder-32B",
        "choices": [{
            "index": 0,
            "message": {
                "role": "assistant",
                "content": response_text
            },
            "finish_reason": "stop"
        }],
        "usage": {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens
        }
    }

async def query_model(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        
        payload = {
            "inputs": {
                "messages": messages
            },
            "parameters": {
                "max_new_tokens": data.get("max_tokens", 2048),
                "temperature": data.get("temperature", 0.7),
                "top_p": data.get("top_p", 0.95),
                "do_sample": True
            }
        }
        
        response = await query_model(payload)
        
        if isinstance(response, dict) and "error" in response:
            return JSONResponse(
                status_code=500,
                content={"error": response["error"]}
            )
        
        response_text = response[0]["generated_text"]
        
        return JSONResponse(
            content=format_chat_response(response_text)
        )
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": str(e)}
        )

def generate_response(messages):
    payload = {
        "inputs": {
            "messages": messages
        },
        "parameters": {
            "max_new_tokens": 2048,
            "temperature": 0.7,
            "top_p": 0.95,
            "do_sample": True
        }
    }
    
    response = requests.post(API_URL, headers=headers, json=payload)
    result = response.json()
    
    if isinstance(result, dict) and "error" in result:
        return f"Error: {result['error']}"
    
    return result[0]["generated_text"]

def chat_interface(message, chat_history):
    if message.strip() == "":
        return chat_history
    
    try:
        messages = []
        for msg in chat_history:
            messages.append({"role": "user", "content": msg[0]})
            if msg[1] is not None:
                messages.append({"role": "assistant", "content": msg[1]})
        
        messages.append({"role": "user", "content": message})
        
        response = generate_response(messages)
        
        chat_history.append((message, response))
        return chat_history
    except Exception as e:
        chat_history.append((message, f"Error: {str(e)}"))
        return chat_history

# Create Gradio interface
demo = gr.Chatbot(
    chat_interface,
    title="Qwen2.5-Coder-32B Chat",
    description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API",
    examples=[
        "Hello! Can you help me with coding?",
        "Write a simple Python function to calculate factorial"
    ]
)

# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/")

# For running with uvicorn directly
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)