File size: 2,362 Bytes
cce0194
 
404e508
cce0194
 
 
 
 
 
 
 
404e508
 
 
 
 
 
 
 
 
 
 
 
 
cce0194
 
 
 
404e508
 
 
 
cce0194
 
 
404e508
cce0194
 
 
 
 
 
 
 
 
 
404e508
 
 
 
 
 
cce0194
 
 
404e508
 
 
 
 
 
 
cce0194
404e508
cce0194
 
 
 
 
 
404e508
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch

app = FastAPI()

# Model configuration
MODEL_NAME = "nlptown/bert-base-multilingual-uncased-sentiment"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize sentiment analysis model
sentiment_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
sentiment_classifier = pipeline(
    "sentiment-analysis",
    model=MODEL_NAME,
    tokenizer=sentiment_tokenizer,
    device=DEVICE
)

# Initialize GPT-2 for text generation
MODEL_NAME_LARGE = "gpt2-large"
generation_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_LARGE)
generation_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME_LARGE).to(DEVICE)

class TextInput(BaseModel):
    text: str

class GenerationInput(BaseModel):
    prompt: str
    max_length: int = 100

@app.post("/analyze-sentiment")
async def analyze_sentiment(input_data: TextInput):
    try:
        result = sentiment_classifier(input_data.text)
        return {
            "sentiment": result[0]['label'],
            "score": float(result[0]['score'])
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/generate-text")
async def generate_text(input_data: GenerationInput):
    try:
        inputs = generation_tokenizer(
            input_data.prompt, 
            return_tensors="pt"
        ).to(DEVICE)
        
        outputs = generation_model.generate(
            inputs["input_ids"],
            max_length=input_data.max_length,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            pad_token_id=generation_tokenizer.eos_token_id
        )
        
        generated_text = generation_tokenizer.decode(
            outputs[0], 
            skip_special_tokens=True
        )
        
        return {"generated_text": generated_text}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "sentiment_model": MODEL_NAME,
        "generation_model": MODEL_NAME_LARGE,
        "device": str(DEVICE)
    }

# Dodaj to na końcu pliku
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)