File size: 4,236 Bytes
37e4010
 
 
 
d6b0a9b
 
 
1fb73a8
cce0194
37e4010
cce0194
 
d6b0a9b
 
 
 
 
 
404e508
d6b0a9b
37e4010
 
 
 
d6b0a9b
37e4010
 
 
 
 
 
 
 
 
 
 
 
cce0194
37e4010
cce0194
d6b0a9b
 
 
 
37e4010
 
cce0194
37e4010
 
 
d6b0a9b
 
 
 
 
 
 
 
 
 
 
 
404e508
d6b0a9b
 
37e4010
d6b0a9b
 
 
 
 
404e508
d6b0a9b
37e4010
 
d6b0a9b
 
 
 
 
 
 
37e4010
cce0194
37e4010
 
 
 
cce0194
d6b0a9b
1fb73a8
d6b0a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb73a8
d6b0a9b
 
1fb73a8
d6b0a9b
1fb73a8
37e4010
 
 
2e36566
 
 
 
 
 
37e4010
2e36566
 
37e4010
1fb73a8
 
 
 
 
 
37e4010
 
 
 
d6b0a9b
37e4010
404e508
37e4010
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio

# Initialize FastAPI
app = FastAPI()

# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
    "Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
    "Content-Type": "application/json"
}

def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
    return {
        "id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
        "object": "chat.completion",
        "created": int(datetime.datetime.now().timestamp()),
        "model": "Qwen/Qwen2.5-Coder-32B",
        "choices": [{
            "index": 0,
            "message": {
                "role": "assistant",
                "content": response_text
            },
            "finish_reason": "stop"
        }],
        "usage": {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens
        }
    }

async def query_model(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
    try:
        data = await request.json()
        messages = data.get("messages", [])
        
        # Prepare the payload for the Inference API
        payload = {
            "inputs": {
                "messages": messages
            },
            "parameters": {
                "max_new_tokens": data.get("max_tokens", 2048),
                "temperature": data.get("temperature", 0.7),
                "top_p": data.get("top_p", 0.95),
                "do_sample": True
            }
        }
        
        # Get response from model
        response = await query_model(payload)
        
        if isinstance(response, dict) and "error" in response:
            return JSONResponse(
                status_code=500,
                content={"error": response["error"]}
            )
        
        response_text = response[0]["generated_text"]
        
        return JSONResponse(
            content=format_chat_response(
                response_text,
                # Note: Actual token counts would need to be calculated differently
                # or obtained from the API response if available
                prompt_tokens=0,
                completion_tokens=0
            )
        )
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": str(e)}
        )

# Synchronous function to generate response for Gradio
def generate_response(messages):
    payload = {
        "inputs": {
            "messages": messages
        },
        "parameters": {
            "max_new_tokens": 2048,
            "temperature": 0.7,
            "top_p": 0.95,
            "do_sample": True
        }
    }
    
    response = requests.post(API_URL, headers=headers, json=payload)
    result = response.json()
    
    if isinstance(result, dict) and "error" in result:
        return f"Error: {result['error']}"
    
    return result[0]["generated_text"]

# Gradio interface for testing
def chat_interface(message, history):
    history = history or []
    messages = []
    
    # Convert history to messages format
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    
    # Generate response synchronously
    try:
        response_text = generate_response(messages)
        return response_text
    except Exception as e:
        return f"Error generating response: {str(e)}"

interface = gr.ChatInterface(
    chat_interface,
    title="Qwen2.5-Coder-32B Chat",
    description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API. This Space also provides a /v1/chat/completions endpoint."
)

# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, interface, path="/")