Spaces:
Runtime error
Runtime error
File size: 4,236 Bytes
37e4010 d6b0a9b 1fb73a8 cce0194 37e4010 cce0194 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 37e4010 cce0194 37e4010 cce0194 d6b0a9b 37e4010 cce0194 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 404e508 d6b0a9b 37e4010 d6b0a9b 37e4010 cce0194 37e4010 cce0194 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 d6b0a9b 1fb73a8 37e4010 2e36566 37e4010 2e36566 37e4010 1fb73a8 37e4010 d6b0a9b 37e4010 404e508 37e4010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import json
import asyncio
# Initialize FastAPI
app = FastAPI()
# Configuration
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B"
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
@app.post("/v1/chat/completions")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
# Prepare the payload for the Inference API
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
# Get response from model
response = await query_model(payload)
if isinstance(response, dict) and "error" in response:
return JSONResponse(
status_code=500,
content={"error": response["error"]}
)
response_text = response[0]["generated_text"]
return JSONResponse(
content=format_chat_response(
response_text,
# Note: Actual token counts would need to be calculated differently
# or obtained from the API response if available
prompt_tokens=0,
completion_tokens=0
)
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
# Synchronous function to generate response for Gradio
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
response = requests.post(API_URL, headers=headers, json=payload)
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
# Gradio interface for testing
def chat_interface(message, history):
history = history or []
messages = []
# Convert history to messages format
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Generate response synchronously
try:
response_text = generate_response(messages)
return response_text
except Exception as e:
return f"Error generating response: {str(e)}"
interface = gr.ChatInterface(
chat_interface,
title="Qwen2.5-Coder-32B Chat",
description="Chat with Qwen2.5-Coder-32B model via Hugging Face Inference API. This Space also provides a /v1/chat/completions endpoint."
)
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, interface, path="/") |