api-test / app.py
OjciecTadeusz's picture
Create app.py
cce0194 verified
raw
history blame
1.98 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
app = FastAPI()
# Model configuration
MODEL_NAME = "nlptown/bert-base-multilingual-uncased-sentiment"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device=DEVICE)
class TextInput(BaseModel):
text: str
@app.post("/analyze-sentiment")
async def analyze_sentiment(input_data: TextInput):
try:
result = classifier(input_data.text)
return {
"sentiment": result[0]['label'],
"score": float(result[0]['score'])
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Przykład dla większego modelu (np. GPT-2)
MODEL_NAME_LARGE = "gpt2-large"
tokenizer_large = AutoTokenizer.from_pretrained(MODEL_NAME_LARGE)
model_large = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME_LARGE)
class GenerationInput(BaseModel):
prompt: str
max_length: int = 100
@app.post("/generate-text")
async def generate_text(input_data: GenerationInput):
try:
inputs = tokenizer_large(input_data.prompt, return_tensors="pt")
outputs = model_large.generate(
inputs["input_ids"],
max_length=input_data.max_length,
num_return_sequences=1,
no_repeat_ngram_size=2
)
generated_text = tokenizer_large.decode(outputs[0], skip_special_tokens=True)
return {"generated_text": generated_text}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Dodanie podstawowego health checka
@app.get("/health")
async def health_check():
return {"status": "healthy"}