api-test / app.py
OjciecTadeusz's picture
Update app.py
fb0b12d verified
raw
history blame
4.98 kB
import gradio as gr
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
import datetime
import requests
import os
import logging
import toml
import uvicorn
# Initialize FastAPI
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load config
# with open("config.toml") as f:
# config = toml.load(f)
#API_URL = os.getenv('API_URL')
#API_TOKEN = os.getenv('API_TOKEN')
# API_URL = 'https://ojciectadeusz-fastapi-inference-qwen2-5-coder-32-a0ab504.hf.space/v1/chat/completions'
API_URL = 'https://ojciectadeusz-fastapi-inference-qwen2-5-coder-32b-instruct.hf.space/generate'
headers = {
"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}",
"Content-Type": "application/json"
}
def format_chat_response(response_text, prompt_tokens=0, completion_tokens=0):
return {
"id": f"chatcmpl-{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}",
"object": "chat.completion",
"created": int(datetime.datetime.now().timestamp()),
"model": "Qwen/Qwen2.5-Coder-32B",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
}
async def query_model(payload):
try:
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/status")
async def status():
try:
response_text = "it's working"
return JSONResponse(content=format_chat_response(response_text))
except Exception as e:
logger.error(f"Status check failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate")
async def chat_completion(request: Request):
try:
data = await request.json()
messages = data.get("messages", [])
if not messages:
raise HTTPException(status_code=400, detail="Messages are required")
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": data.get("max_tokens", 2048),
"temperature": data.get("temperature", 0.7),
"top_p": data.get("top_p", 0.95),
"do_sample": True
}
}
response = await query_model(payload)
print(response)
if isinstance(response, dict) and "error" in response:
raise HTTPException(status_code=500, detail=response["error"])
response_text = response[0]["generated_text"]
return JSONResponse(content=format_chat_response(response_text))
except HTTPException as e:
logger.error(f"Chat completion failed: {e.detail}")
raise e
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail=str(e))
def generate_response(messages):
payload = {
"inputs": {
"messages": messages
},
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True
}
}
try:
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
if isinstance(result, dict) and "error" in result:
return f"Error: {result['error']}"
return result[0]["generated_text"]
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
return f"Error: {e}"
def chat_interface(messages):
chat_history = []
for message in messages:
try:
response = generate_response([{"role": "user", "content": message}])
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
except Exception as e:
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return chat_history
# Create Gradio interface
def gradio_app():
return gr.ChatInterface(chat_interface, type="messages")
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, gradio_app(), path="/")
# For running with uvicorn directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)