from fastapi import FastAPI from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.1 # Updated minimum value for stability max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(item: Item): temperature = max(0.1, item.temperature) top_p = float(item.top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=item.max_new_tokens, top_p=top_p, repetition_penalty=item.repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) response_stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False ) output = "" try: for response in response_stream: if hasattr(response, "token") and response.token is not None: output += response.token.text else: output += str(response) # Obsługa przypadków, gdy `response` nie ma atrybutu `token` except Exception as e: output = f"Błąd: {str(e)}" return output @app.post("/generate/") async def generate_text(item: Item): try: return {"response": generate(item)} except Exception as e: return {"error": str(e)} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)