Oliver Li commited on
Commit
4b4d3c0
·
1 Parent(s): 2599dc4

added app and requirement files

Browse files
Files changed (2) hide show
  1. app.py +38 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
3
+
4
+ # Function to load the pre-trained model
5
+ def load_model(model_name):
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
8
+ sentiment_pipeline = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
9
+ return sentiment_pipeline
10
+
11
+ # Streamlit app
12
+ st.title("Basic Sentiment Analysis App")
13
+ st.write("Enter a text and select a pre-trained model to get the sentiment analysis.")
14
+
15
+ # Input text
16
+ text = st.text_input("Enter your text:")
17
+
18
+ # Model selection
19
+ model_options = [
20
+ "distilbert-base-uncased-finetuned-sst-2-english",
21
+ "textattack/bert-base-uncased-SST-2",
22
+ "cardiffnlp/twitter-roberta-base-sentiment",
23
+ "nlptown/bert-base-multilingual-uncased-sentiment"
24
+ ]
25
+
26
+ selected_model = st.selectbox("Choose a pre-trained model:", model_options)
27
+
28
+ # Load the model and perform sentiment analysis
29
+ if st.button("Analyze"):
30
+ if not text:
31
+ st.write("Please enter a text.")
32
+ else:
33
+ with st.spinner("Analyzing sentiment..."):
34
+ sentiment_pipeline = load_model(selected_model)
35
+ result = sentiment_pipeline(text)
36
+ st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
37
+ else:
38
+ st.write("Enter a text and click 'Analyze' to perform sentiment analysis.")
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ torch
3
+ transformers