Spaces:
Runtime error
Runtime error
Oliver Li
commited on
Commit
·
c193e45
1
Parent(s):
58e1783
bug fix
Browse files
app.py
CHANGED
@@ -3,11 +3,17 @@ import pandas as pd
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
|
5 |
# Function to load the pre-trained model
|
6 |
-
def
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
return tokenizer, model
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Streamlit app
|
12 |
st.title("Multi-label Toxicity Detection App")
|
13 |
st.write("Enter a text and select the fine-tuned model to get the toxicity analysis.")
|
@@ -49,13 +55,9 @@ if st.button("Analyze"):
|
|
49 |
else:
|
50 |
with st.spinner("Analyzing toxicity..."):
|
51 |
if selected_model == "Olivernyu/finetuned_bert_base_uncased":
|
52 |
-
|
53 |
-
toxicity_detector = pipeline("text-classification", tokenizer=tokenizer, model=model)
|
54 |
outputs = toxicity_detector(text, top_k=2)
|
55 |
-
|
56 |
category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
57 |
-
|
58 |
-
|
59 |
results = []
|
60 |
for item in outputs:
|
61 |
results.append((category[item['label']], item['score']))
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
|
5 |
# Function to load the pre-trained model
|
6 |
+
def load_finetune_model(model_name):
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
return tokenizer, model
|
10 |
|
11 |
+
def load_model(model_name):
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
+
sentiment_pipeline = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
|
15 |
+
return sentiment_pipeline
|
16 |
+
|
17 |
# Streamlit app
|
18 |
st.title("Multi-label Toxicity Detection App")
|
19 |
st.write("Enter a text and select the fine-tuned model to get the toxicity analysis.")
|
|
|
55 |
else:
|
56 |
with st.spinner("Analyzing toxicity..."):
|
57 |
if selected_model == "Olivernyu/finetuned_bert_base_uncased":
|
58 |
+
toxicity_detector = load_finetune_model(selected_model)
|
|
|
59 |
outputs = toxicity_detector(text, top_k=2)
|
|
|
60 |
category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
|
|
|
|
61 |
results = []
|
62 |
for item in outputs:
|
63 |
results.append((category[item['label']], item['score']))
|