Oliver Li commited on
Commit
d1a1e86
·
1 Parent(s): d8d71bd

modified table display

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -102,13 +102,14 @@ initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksu
102
  for d in initial_table_data:
103
  table_df = pd.concat([table_df, pd.DataFrame(d)], ignore_index=True)
104
  # Load the model and perform toxicity analysis
 
105
  if st.button("Analyze"):
106
  if not text:
107
  st.write("Please enter a text.")
108
  else:
109
  with st.spinner("Analyzing toxicity..."):
110
  if selected_model == "Olivernyu/finetuned_bert_base_uncased":
111
- st.table(table_df)
112
  toxicity_detector = load_model(selected_model)
113
  outputs = toxicity_detector(text, top_k=2)
114
  category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
@@ -127,6 +128,7 @@ if st.button("Analyze"):
127
  table_df = pd.concat([pd.DataFrame(table_data), table_df], ignore_index=True)
128
  st.table(table_df)
129
  else:
 
130
  sentiment_pipeline = load_model(selected_model)
131
  result = sentiment_pipeline(text)
132
  st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
 
102
  for d in initial_table_data:
103
  table_df = pd.concat([table_df, pd.DataFrame(d)], ignore_index=True)
104
  # Load the model and perform toxicity analysis
105
+ st.table(table_df)
106
  if st.button("Analyze"):
107
  if not text:
108
  st.write("Please enter a text.")
109
  else:
110
  with st.spinner("Analyzing toxicity..."):
111
  if selected_model == "Olivernyu/finetuned_bert_base_uncased":
112
+ st.empty()
113
  toxicity_detector = load_model(selected_model)
114
  outputs = toxicity_detector(text, top_k=2)
115
  category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
 
128
  table_df = pd.concat([pd.DataFrame(table_data), table_df], ignore_index=True)
129
  st.table(table_df)
130
  else:
131
+ st.empty()
132
  sentiment_pipeline = load_model(selected_model)
133
  result = sentiment_pipeline(text)
134
  st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")