Spaces:
Runtime error
Runtime error
Oliver Li
commited on
Commit
·
e7c1530
1
Parent(s):
89af5f1
use session state
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
-
|
5 |
# Function to load the pre-trained model
|
|
|
6 |
def load_finetune_model(model_name):
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
@@ -48,7 +49,7 @@ selected_model = st.selectbox("Choose a fine-tuned model:", model_options)
|
|
48 |
st.write("### Model Information")
|
49 |
st.write(f"**Description:** {model_options[selected_model]['description']}")
|
50 |
|
51 |
-
|
52 |
initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksucker you know "],
|
53 |
'Toxicity class 1': ['obscene'],
|
54 |
'Class 1 probability': 0.7282997369766235,
|
@@ -100,8 +101,9 @@ initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksu
|
|
100 |
'Toxicity class 2': ['obscene'],
|
101 |
'Class 2 probability': 0.16506287455558777}]
|
102 |
for d in initial_table_data:
|
103 |
-
|
104 |
# Load the model and perform toxicity analysis
|
|
|
105 |
if st.button("Analyze"):
|
106 |
if not text:
|
107 |
st.write("Please enter a text.")
|
@@ -123,14 +125,18 @@ if st.button("Analyze"):
|
|
123 |
"Toxicity class 2": [results[1][0]],
|
124 |
f"Class 2 probability": results[1][1]
|
125 |
}
|
126 |
-
print("Before concatenation:")
|
127 |
-
print(table_df)
|
128 |
# Concatenate the new data frame with the existing data frame
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
# Update the table with the new data frame
|
133 |
-
st.table(table_df)
|
134 |
else:
|
135 |
st.empty()
|
136 |
sentiment_pipeline = load_model(selected_model)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
import SessionState
|
5 |
# Function to load the pre-trained model
|
6 |
+
ss = SessionState.get(table_df=pd.DataFrame(), first_run = True)
|
7 |
def load_finetune_model(model_name):
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
49 |
st.write("### Model Information")
|
50 |
st.write(f"**Description:** {model_options[selected_model]['description']}")
|
51 |
|
52 |
+
initial_table_df = pd.DataFrame(columns=["Text (portion)", "Toxicity class 1", "Class 1 probability", "Toxicity class 2", "Class 2 probability"])
|
53 |
initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksucker you know "],
|
54 |
'Toxicity class 1': ['obscene'],
|
55 |
'Class 1 probability': 0.7282997369766235,
|
|
|
101 |
'Toxicity class 2': ['obscene'],
|
102 |
'Class 2 probability': 0.16506287455558777}]
|
103 |
for d in initial_table_data:
|
104 |
+
initial_table_df = pd.concat([initial_table_df, pd.DataFrame(d)], ignore_index=True)
|
105 |
# Load the model and perform toxicity analysis
|
106 |
+
|
107 |
if st.button("Analyze"):
|
108 |
if not text:
|
109 |
st.write("Please enter a text.")
|
|
|
125 |
"Toxicity class 2": [results[1][0]],
|
126 |
f"Class 2 probability": results[1][1]
|
127 |
}
|
128 |
+
# print("Before concatenation:")
|
129 |
+
# print(table_df)
|
130 |
# Concatenate the new data frame with the existing data frame
|
131 |
+
if ss.first_run:
|
132 |
+
ss.table_df = pd.concat([pd.DataFrame(table_data), ss.table_df, initial_table_data], ignore_index=True)
|
133 |
+
ss.first_run = False
|
134 |
+
else:
|
135 |
+
ss.table_df = pd.concat([pd.DataFrame(table_data), ss.table_df], ignore_index=True)
|
136 |
+
# print("After concatenation:")
|
137 |
+
# print(table_df)
|
138 |
# Update the table with the new data frame
|
139 |
+
st.table(ss.table_df)
|
140 |
else:
|
141 |
st.empty()
|
142 |
sentiment_pipeline = load_model(selected_model)
|