Spaces:
Sleeping
Sleeping
Commit
·
8df2cd3
1
Parent(s):
44570bb
v1.2.0 requirements added, new model testing
Browse files- app.py +44 -17
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,24 +1,51 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
def load_model():
|
8 |
-
print("Loading model...")
|
9 |
-
return pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
|
5 |
+
device = 'cpu' #or 'cpu' for translate on cpu
|
|
|
|
|
|
|
6 |
|
7 |
+
model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
9 |
+
model.to(device)
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
prefix = 'translate to en: '
|
13 |
+
src_text = prefix + "Съешь ещё этих мягких французских булок."
|
14 |
|
15 |
+
# translate Russian to Chinese
|
16 |
+
input_ids = tokenizer(src_text, return_tensors="pt")
|
17 |
|
18 |
+
generated_tokens = model.generate(**input_ids.to(device))
|
19 |
+
|
20 |
+
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
21 |
+
print(result)
|
22 |
+
st.write(result[0])
|
23 |
+
# 再吃这些法国的甜蜜的面包。
|
24 |
+
# import streamlit as st
|
25 |
+
# from transformers import pipeline
|
26 |
+
# import torch
|
27 |
+
# import scipy
|
28 |
+
|
29 |
+
# st.title("FinalProject")
|
30 |
+
|
31 |
+
|
32 |
+
# @st.cache_resource
|
33 |
+
# def load_summarization_model():
|
34 |
+
# print("Loading summarization model...")
|
35 |
+
# return pipeline("summarization", model="facebook/bart-large-cnn")
|
36 |
+
|
37 |
+
# summarizer = load_summarization_model()
|
38 |
+
|
39 |
+
# ARTICLE = st.text_area("Enter the article to summarize:", height=300)
|
40 |
+
|
41 |
+
# max_length = st.number_input("Enter max length for summary:", min_value=10, max_value=500, value=130)
|
42 |
+
# min_length = st.number_input("Enter min length for summary:", min_value=5, max_value=450, value=30)
|
43 |
+
|
44 |
+
# if st.button("Summarize"):
|
45 |
+
# if ARTICLE.strip():
|
46 |
+
# answer = summarizer(ARTICLE, max_length=int(max_length), min_length=int(min_length), do_sample=False)
|
47 |
+
# summary = answer[0]['summary_text']
|
48 |
+
# st.write("### Summary:")
|
49 |
+
# st.write(summary)
|
50 |
+
# else:
|
51 |
+
# st.error("Please enter an article to summarize.")
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.41.1
|
2 |
+
transformers
|
3 |
+
torch
|