OlzhasBatyrkhanov commited on
Commit
8df2cd3
·
1 Parent(s): 44570bb

v1.2.0 requirements added, new model testing

Browse files
Files changed (2) hide show
  1. app.py +44 -17
  2. requirements.txt +3 -0
app.py CHANGED
@@ -1,24 +1,51 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
- st.title("FinalProject")
5
 
6
- @st.cache_resource
7
- def load_model():
8
- print("Loading model...")
9
- return pipeline("summarization", model="facebook/bart-large-cnn")
10
 
11
- summarizer = load_model()
 
 
 
12
 
13
- ARTICLE = st.text_area("Enter the article to summarize:", height=300)
 
14
 
15
- max_length = st.number_input("Enter max length for summary:", min_value=10, max_value=500, value=130)
16
- min_length = st.number_input("Enter min length for summary:", min_value=5, max_value=450, value=30)
17
 
18
- if st.button("Summarize"):
19
- if ARTICLE.strip():
20
- answer = summarizer(ARTICLE, max_length=int(max_length), min_length=int(min_length), do_sample=False)
21
- st.write("### Summary:")
22
- st.write(answer[0]['summary_text'])
23
- else:
24
- st.error("Please enter an article to summarize.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
 
2
 
3
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
4
 
5
+ device = 'cpu' #or 'cpu' for translate on cpu
 
 
 
6
 
7
+ model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024'
8
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
9
+ model.to(device)
10
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
11
 
12
+ prefix = 'translate to en: '
13
+ src_text = prefix + "Съешь ещё этих мягких французских булок."
14
 
15
+ # translate Russian to Chinese
16
+ input_ids = tokenizer(src_text, return_tensors="pt")
17
 
18
+ generated_tokens = model.generate(**input_ids.to(device))
19
+
20
+ result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
21
+ print(result)
22
+ st.write(result[0])
23
+ # 再吃这些法国的甜蜜的面包。
24
+ # import streamlit as st
25
+ # from transformers import pipeline
26
+ # import torch
27
+ # import scipy
28
+
29
+ # st.title("FinalProject")
30
+
31
+
32
+ # @st.cache_resource
33
+ # def load_summarization_model():
34
+ # print("Loading summarization model...")
35
+ # return pipeline("summarization", model="facebook/bart-large-cnn")
36
+
37
+ # summarizer = load_summarization_model()
38
+
39
+ # ARTICLE = st.text_area("Enter the article to summarize:", height=300)
40
+
41
+ # max_length = st.number_input("Enter max length for summary:", min_value=10, max_value=500, value=130)
42
+ # min_length = st.number_input("Enter min length for summary:", min_value=5, max_value=450, value=30)
43
+
44
+ # if st.button("Summarize"):
45
+ # if ARTICLE.strip():
46
+ # answer = summarizer(ARTICLE, max_length=int(max_length), min_length=int(min_length), do_sample=False)
47
+ # summary = answer[0]['summary_text']
48
+ # st.write("### Summary:")
49
+ # st.write(summary)
50
+ # else:
51
+ # st.error("Please enter an article to summarize.")
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit==1.41.1
2
+ transformers
3
+ torch