Om-Alve commited on
Commit
319f6be
·
1 Parent(s): a459d13

downscaling

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -35,7 +35,7 @@ class StyleTransfer(nn.Module):
35
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
36
 
37
  def image_merger(content, style,beta=10,device=device):
38
- size = 400
39
  alpha = 1
40
  beta *= 1000
41
  content = Image.fromarray(content)
@@ -52,7 +52,7 @@ def image_merger(content, style,beta=10,device=device):
52
  generator = StyleTransfer().to(device).eval()
53
  opt = torch.optim.Adam([generated],lr=0.06)
54
  scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.9) # Learning rate scheduler
55
- num_epochs = 30 if device == "cpu" else 100
56
  style_features,_ = generator(style)
57
  _,content_features = generator(content)
58
  loop = tqdm(range(num_epochs),leave=False)
@@ -74,7 +74,7 @@ def image_merger(content, style,beta=10,device=device):
74
  total_loss.backward(retain_graph=True)
75
  opt.step()
76
  scheduler.step()
77
- if total_loss < 200 and device=='cpu':
78
  break
79
  print(total_loss.item())
80
  img = np.array(generated.cpu().detach().squeeze(0).permute(1,2,0))
 
35
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
36
 
37
  def image_merger(content, style,beta=10,device=device):
38
+ size = 300
39
  alpha = 1
40
  beta *= 1000
41
  content = Image.fromarray(content)
 
52
  generator = StyleTransfer().to(device).eval()
53
  opt = torch.optim.Adam([generated],lr=0.06)
54
  scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.9) # Learning rate scheduler
55
+ num_epochs = 30 if device != "cuda" else 100
56
  style_features,_ = generator(style)
57
  _,content_features = generator(content)
58
  loop = tqdm(range(num_epochs),leave=False)
 
74
  total_loss.backward(retain_graph=True)
75
  opt.step()
76
  scheduler.step()
77
+ if total_loss < 200 and device!='cuda':
78
  break
79
  print(total_loss.item())
80
  img = np.array(generated.cpu().detach().squeeze(0).permute(1,2,0))