Spaces:
Running
Running
Commit
·
5612db5
1
Parent(s):
0c13c1c
update
Browse files
options/Video_model/Model.py
CHANGED
@@ -1,19 +1,58 @@
|
|
1 |
import torch
|
2 |
from diffusers import StableVideoDiffusionPipeline
|
3 |
-
|
4 |
from PIL import Image
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# pipeline.enable_model_cpu_offload()
|
12 |
-
def Video(image):
|
13 |
-
image = Image.fromarray(image)
|
14 |
-
image = image.resize((1024, 576))
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from diffusers import StableVideoDiffusionPipeline
|
3 |
+
from diffusers.utils import load_image, save_video
|
4 |
from PIL import Image
|
5 |
+
from tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
|
6 |
+
from utils import load_lora_weights, save_video
|
7 |
|
8 |
+
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
|
9 |
+
lora_repo_path = 'RED-AIGC/TDD'
|
10 |
+
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
noise_scheduler = TDDSVDStochasticIterativeScheduler(num_train_timesteps = 250, sigma_min = 0.002, sigma_max = 700.0, sigma_data = 1.0,
|
14 |
+
s_noise = 1.0, rho = 7, clip_denoised = False)
|
15 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(svd_path, scheduler = noise_scheduler, torch_dtype = torch.float16, variant = "fp16").to('cuda')
|
16 |
+
load_lora_weights(pipeline.unet, lora_repo_path, weight_name = lora_weight_name)
|
17 |
+
|
18 |
+
@spaces.GPU
|
19 |
+
def Video(
|
20 |
+
image: Image,
|
21 |
+
seed: Optional[int] = 1,
|
22 |
+
randomize_seed: bool = False,
|
23 |
+
num_inference_steps: int = 4,
|
24 |
+
eta: float = 0.3,
|
25 |
+
min_guidance_scale: float = 1.0,
|
26 |
+
max_guidance_scale: float = 1.0,
|
27 |
+
fps: int = 7,
|
28 |
+
width: int = 512,
|
29 |
+
height: int = 512,
|
30 |
+
num_frames: int = 25,
|
31 |
+
motion_bucket_id: int = 127,
|
32 |
+
output_folder: str = "outputs_gradio",
|
33 |
+
):
|
34 |
+
pipeline.scheduler.set_eta(eta)
|
35 |
+
|
36 |
+
if randomize_seed:
|
37 |
+
seed = random.randint(0, max_64_bit_int)
|
38 |
+
generator = torch.manual_seed(seed)
|
39 |
+
|
40 |
+
os.makedirs(output_folder, exist_ok=True)
|
41 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
42 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
43 |
+
|
44 |
+
with torch.autocast("cuda"):
|
45 |
+
frames = pipeline(
|
46 |
+
image, height = height, width = width,
|
47 |
+
num_inference_steps = num_inference_steps,
|
48 |
+
min_guidance_scale = min_guidance_scale,
|
49 |
+
max_guidance_scale = max_guidance_scale,
|
50 |
+
num_frames = num_frames, fps = fps, motion_bucket_id = motion_bucket_id,
|
51 |
+
decode_chunk_size = 8,
|
52 |
+
noise_aug_strength = 0.02,
|
53 |
+
generator = generator,
|
54 |
+
).frames[0]
|
55 |
+
save_video(frames, video_path, fps = fps, quality = 5.0)
|
56 |
+
torch.manual_seed(seed)
|
57 |
+
|
58 |
+
return video_path, seed
|
options/Video_model/__pycache__/Model.cpython-310.pyc
CHANGED
Binary files a/options/Video_model/__pycache__/Model.cpython-310.pyc and b/options/Video_model/__pycache__/Model.cpython-310.pyc differ
|
|