OmarElgammal1's picture
Version 2.2
e9dc27e
raw
history blame
1.83 kB
import gradio as gr
import pickle
from transformers import pipeline
def load_model(selected_model):
with open(selected_model, 'rb') as file:
loaded_model = pickle.load(file)
return loaded_model
encoder = {
'negative':'assets/negative.jpeg',
'neutral':'assets/neutral.jpeg',
'positive':'assets/positive.jpeg'
}
def predict(model, text):
selected_model = None
with open('vectorizer.pkl', 'rb') as file:
vectorizer = pickle.load(file)
if 'Random Forest' == model:
selected_model = "models/rf_twitter.pkl"
elif 'Logistic Regression' == model:
selected_model = "models/lg_twitter.pkl"
elif 'Naive Bayes' == model:
selected_model = "models/nb_twitter.pkl"
elif 'Decision Tree' == model:
selected_model = "models/dt_twitter.pkl"
elif 'KNN' == model:
selected_model = "models/knn_twitter.pkl"
else:
selected_model = "models/lg_twitter.pkl"
loaded_model = load_model(selected_model)
text_vector = vectorizer.transform([text])
prediction = loaded_model.predict(text_vector)
return encoder[prediction[0]]
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
def analyze_sentiment(text):
results = classifier(text,["positive","negative",'neutral'],multi_label=True)
mx = max(results['scores'])
ind = results['scores'].index(mx)
result = results['labels'][ind]
return encoder[result]
# models = gr.Radio(['Random Forest', 'Logistic Regression','Naive Bayes','Decision Tree','KNN'], label="Choose model")
# demo = gr.Interface(fn=predict, inputs=[models,"text"], outputs="image", title="Sentiment Analysis")
demo = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="image", title="Sentiment Analysis")
demo.launch(share=True)