Commit
·
fcc6bc3
1
Parent(s):
ebf7d28
Add model
Browse files
app.py
CHANGED
@@ -1,3 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
@@ -37,110 +185,115 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
37 |
|
38 |
return image
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
examples = [
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
]
|
45 |
|
46 |
css="""
|
47 |
#col-container {
|
48 |
-
|
49 |
-
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
if torch.cuda.is_available():
|
54 |
-
|
55 |
else:
|
56 |
-
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
with gr.
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
|
135 |
-
gr.
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
)
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import numpy as np
|
3 |
+
# import random
|
4 |
+
# from diffusers import DiffusionPipeline
|
5 |
+
# import torch
|
6 |
+
|
7 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
# if torch.cuda.is_available():
|
10 |
+
# torch.cuda.max_memory_allocated(device=device)
|
11 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
13 |
+
# pipe = pipe.to(device)
|
14 |
+
# else:
|
15 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
+
# pipe = pipe.to(device)
|
17 |
+
|
18 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
# MAX_IMAGE_SIZE = 1024
|
20 |
+
|
21 |
+
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
+
|
23 |
+
# if randomize_seed:
|
24 |
+
# seed = random.randint(0, MAX_SEED)
|
25 |
+
|
26 |
+
# generator = torch.Generator().manual_seed(seed)
|
27 |
+
|
28 |
+
# image = pipe(
|
29 |
+
# prompt = prompt,
|
30 |
+
# negative_prompt = negative_prompt,
|
31 |
+
# guidance_scale = guidance_scale,
|
32 |
+
# num_inference_steps = num_inference_steps,
|
33 |
+
# width = width,
|
34 |
+
# height = height,
|
35 |
+
# generator = generator
|
36 |
+
# ).images[0]
|
37 |
+
|
38 |
+
# return image
|
39 |
+
|
40 |
+
# examples = [
|
41 |
+
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
+
# "An astronaut riding a green horse",
|
43 |
+
# "A delicious ceviche cheesecake slice",
|
44 |
+
# ]
|
45 |
+
|
46 |
+
# css="""
|
47 |
+
# #col-container {
|
48 |
+
# margin: 0 auto;
|
49 |
+
# max-width: 520px;
|
50 |
+
# }
|
51 |
+
# """
|
52 |
+
|
53 |
+
# if torch.cuda.is_available():
|
54 |
+
# power_device = "GPU"
|
55 |
+
# else:
|
56 |
+
# power_device = "CPU"
|
57 |
+
|
58 |
+
# with gr.Blocks(css=css) as demo:
|
59 |
+
|
60 |
+
# with gr.Column(elem_id="col-container"):
|
61 |
+
# gr.Markdown(f"""
|
62 |
+
# # Text-to-Image Gradio Template
|
63 |
+
# Currently running on {power_device}.
|
64 |
+
# """)
|
65 |
+
|
66 |
+
# with gr.Row():
|
67 |
+
|
68 |
+
# prompt = gr.Text(
|
69 |
+
# label="Prompt",
|
70 |
+
# show_label=False,
|
71 |
+
# max_lines=1,
|
72 |
+
# placeholder="Enter your prompt",
|
73 |
+
# container=False,
|
74 |
+
# )
|
75 |
+
|
76 |
+
# run_button = gr.Button("Run", scale=0)
|
77 |
+
|
78 |
+
# result = gr.Image(label="Result", show_label=False)
|
79 |
+
|
80 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
81 |
+
|
82 |
+
# negative_prompt = gr.Text(
|
83 |
+
# label="Negative prompt",
|
84 |
+
# max_lines=1,
|
85 |
+
# placeholder="Enter a negative prompt",
|
86 |
+
# visible=False,
|
87 |
+
# )
|
88 |
+
|
89 |
+
# seed = gr.Slider(
|
90 |
+
# label="Seed",
|
91 |
+
# minimum=0,
|
92 |
+
# maximum=MAX_SEED,
|
93 |
+
# step=1,
|
94 |
+
# value=0,
|
95 |
+
# )
|
96 |
+
|
97 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
+
|
99 |
+
# with gr.Row():
|
100 |
+
|
101 |
+
# width = gr.Slider(
|
102 |
+
# label="Width",
|
103 |
+
# minimum=256,
|
104 |
+
# maximum=MAX_IMAGE_SIZE,
|
105 |
+
# step=32,
|
106 |
+
# value=512,
|
107 |
+
# )
|
108 |
+
|
109 |
+
# height = gr.Slider(
|
110 |
+
# label="Height",
|
111 |
+
# minimum=256,
|
112 |
+
# maximum=MAX_IMAGE_SIZE,
|
113 |
+
# step=32,
|
114 |
+
# value=512,
|
115 |
+
# )
|
116 |
+
|
117 |
+
# with gr.Row():
|
118 |
+
|
119 |
+
# guidance_scale = gr.Slider(
|
120 |
+
# label="Guidance scale",
|
121 |
+
# minimum=0.0,
|
122 |
+
# maximum=10.0,
|
123 |
+
# step=0.1,
|
124 |
+
# value=0.0,
|
125 |
+
# )
|
126 |
+
|
127 |
+
# num_inference_steps = gr.Slider(
|
128 |
+
# label="Number of inference steps",
|
129 |
+
# minimum=1,
|
130 |
+
# maximum=12,
|
131 |
+
# step=1,
|
132 |
+
# value=2,
|
133 |
+
# )
|
134 |
+
|
135 |
+
# gr.Examples(
|
136 |
+
# examples = examples,
|
137 |
+
# inputs = [prompt]
|
138 |
+
# )
|
139 |
+
|
140 |
+
# run_button.click(
|
141 |
+
# fn = infer,
|
142 |
+
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
+
# outputs = [result]
|
144 |
+
# )
|
145 |
+
|
146 |
+
# demo.queue().launch()
|
147 |
+
|
148 |
+
|
149 |
import gradio as gr
|
150 |
import numpy as np
|
151 |
import random
|
|
|
185 |
|
186 |
return image
|
187 |
|
188 |
+
from transformers import pipeline
|
189 |
+
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
190 |
+
|
191 |
+
def analyze_sentiment(text):
|
192 |
+
results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
|
193 |
+
sentiment = max(results['labels'], key=results['scores'].__getitem__)
|
194 |
+
return sentiment
|
195 |
+
|
196 |
examples = [
|
197 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
198 |
+
"An astronaut riding a green horse",
|
199 |
+
"A delicious ceviche cheesecake slice",
|
200 |
]
|
201 |
|
202 |
css="""
|
203 |
#col-container {
|
204 |
+
margin: 0 auto;
|
205 |
+
max-width: 520px;
|
206 |
}
|
207 |
"""
|
208 |
|
209 |
if torch.cuda.is_available():
|
210 |
+
power_device = "GPU"
|
211 |
else:
|
212 |
+
power_device = "CPU"
|
213 |
|
214 |
with gr.Blocks(css=css) as demo:
|
215 |
+
|
216 |
+
with gr.Column(elem_id="col-container"):
|
217 |
+
gr.Markdown(f"""
|
218 |
+
# Text-to-Image Gradio Template
|
219 |
+
Currently running on {power_device}.
|
220 |
+
""")
|
221 |
|
222 |
+
with gr.Row():
|
223 |
+
prompt = gr.Text(
|
224 |
+
label="Prompt",
|
225 |
+
show_label=False,
|
226 |
+
max_lines=1,
|
227 |
+
placeholder="Enter your prompt",
|
228 |
+
container=False,
|
229 |
+
)
|
230 |
+
|
231 |
+
run_button = gr.Button("Run", scale=0)
|
232 |
+
|
233 |
+
sentiment_text = gr.Text(label="Sentiment:", show_label=True, value="", editable=False)
|
234 |
+
result = gr.Image(label="Result", show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
+
with gr.Accordion("Advanced Settings", open=False):
|
237 |
+
negative_prompt = gr.Text(
|
238 |
+
label="Negative prompt",
|
239 |
+
max_lines=1,
|
240 |
+
placeholder="Enter a negative prompt",
|
241 |
+
visible=False,
|
242 |
+
)
|
243 |
+
|
244 |
+
seed = gr.Slider(
|
245 |
+
label="Seed",
|
246 |
+
minimum=0,
|
247 |
+
maximum=MAX_SEED,
|
248 |
+
step=1,
|
249 |
+
value=0,
|
250 |
+
)
|
251 |
+
|
252 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
width = gr.Slider(
|
256 |
+
label="Width",
|
257 |
+
minimum=256,
|
258 |
+
maximum=MAX_IMAGE_SIZE,
|
259 |
+
step=32,
|
260 |
+
value=512,
|
261 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
height = gr.Slider(
|
264 |
+
label="Height",
|
265 |
+
minimum=256,
|
266 |
+
maximum=MAX_IMAGE_SIZE,
|
267 |
+
step=32,
|
268 |
+
value=512,
|
269 |
)
|
270 |
+
|
271 |
+
with gr.Row():
|
272 |
+
guidance_scale = gr.Slider(
|
273 |
+
label="Guidance scale",
|
274 |
+
minimum=0.0,
|
275 |
+
maximum=10.0,
|
276 |
+
step=0.1,
|
277 |
+
value=0.0,
|
278 |
+
)
|
279 |
+
|
280 |
+
num_inference_steps = gr.Slider(
|
281 |
+
label="Number of inference steps",
|
282 |
+
minimum=1,
|
283 |
+
maximum=12,
|
284 |
+
step=1,
|
285 |
+
value=2,
|
286 |
+
)
|
287 |
+
|
288 |
+
gr.Examples(
|
289 |
+
examples = examples,
|
290 |
+
inputs = [prompt]
|
291 |
)
|
292 |
|
293 |
+
run_button.click(
|
294 |
+
fn = infer,
|
295 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
296 |
+
outputs = [result, sentiment_text] # Update outputs to include sentiment text
|
297 |
+
)
|
298 |
+
|
299 |
+
demo.queue().launch()
|