OmarElgammal1 commited on
Commit
fcc6bc3
·
1 Parent(s): ebf7d28
Files changed (1) hide show
  1. app.py +242 -89
app.py CHANGED
@@ -1,3 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
@@ -37,110 +185,115 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
37
 
38
  return image
39
 
 
 
 
 
 
 
 
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
  css="""
47
  #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
  }
51
  """
52
 
53
  if torch.cuda.is_available():
54
- power_device = "GPU"
55
  else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
 
 
 
 
 
 
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
 
 
 
138
  )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  )
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # import numpy as np
3
+ # import random
4
+ # from diffusers import DiffusionPipeline
5
+ # import torch
6
+
7
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
8
+
9
+ # if torch.cuda.is_available():
10
+ # torch.cuda.max_memory_allocated(device=device)
11
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
+ # pipe.enable_xformers_memory_efficient_attention()
13
+ # pipe = pipe.to(device)
14
+ # else:
15
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
+ # pipe = pipe.to(device)
17
+
18
+ # MAX_SEED = np.iinfo(np.int32).max
19
+ # MAX_IMAGE_SIZE = 1024
20
+
21
+ # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
+
23
+ # if randomize_seed:
24
+ # seed = random.randint(0, MAX_SEED)
25
+
26
+ # generator = torch.Generator().manual_seed(seed)
27
+
28
+ # image = pipe(
29
+ # prompt = prompt,
30
+ # negative_prompt = negative_prompt,
31
+ # guidance_scale = guidance_scale,
32
+ # num_inference_steps = num_inference_steps,
33
+ # width = width,
34
+ # height = height,
35
+ # generator = generator
36
+ # ).images[0]
37
+
38
+ # return image
39
+
40
+ # examples = [
41
+ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
+ # "An astronaut riding a green horse",
43
+ # "A delicious ceviche cheesecake slice",
44
+ # ]
45
+
46
+ # css="""
47
+ # #col-container {
48
+ # margin: 0 auto;
49
+ # max-width: 520px;
50
+ # }
51
+ # """
52
+
53
+ # if torch.cuda.is_available():
54
+ # power_device = "GPU"
55
+ # else:
56
+ # power_device = "CPU"
57
+
58
+ # with gr.Blocks(css=css) as demo:
59
+
60
+ # with gr.Column(elem_id="col-container"):
61
+ # gr.Markdown(f"""
62
+ # # Text-to-Image Gradio Template
63
+ # Currently running on {power_device}.
64
+ # """)
65
+
66
+ # with gr.Row():
67
+
68
+ # prompt = gr.Text(
69
+ # label="Prompt",
70
+ # show_label=False,
71
+ # max_lines=1,
72
+ # placeholder="Enter your prompt",
73
+ # container=False,
74
+ # )
75
+
76
+ # run_button = gr.Button("Run", scale=0)
77
+
78
+ # result = gr.Image(label="Result", show_label=False)
79
+
80
+ # with gr.Accordion("Advanced Settings", open=False):
81
+
82
+ # negative_prompt = gr.Text(
83
+ # label="Negative prompt",
84
+ # max_lines=1,
85
+ # placeholder="Enter a negative prompt",
86
+ # visible=False,
87
+ # )
88
+
89
+ # seed = gr.Slider(
90
+ # label="Seed",
91
+ # minimum=0,
92
+ # maximum=MAX_SEED,
93
+ # step=1,
94
+ # value=0,
95
+ # )
96
+
97
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
+
99
+ # with gr.Row():
100
+
101
+ # width = gr.Slider(
102
+ # label="Width",
103
+ # minimum=256,
104
+ # maximum=MAX_IMAGE_SIZE,
105
+ # step=32,
106
+ # value=512,
107
+ # )
108
+
109
+ # height = gr.Slider(
110
+ # label="Height",
111
+ # minimum=256,
112
+ # maximum=MAX_IMAGE_SIZE,
113
+ # step=32,
114
+ # value=512,
115
+ # )
116
+
117
+ # with gr.Row():
118
+
119
+ # guidance_scale = gr.Slider(
120
+ # label="Guidance scale",
121
+ # minimum=0.0,
122
+ # maximum=10.0,
123
+ # step=0.1,
124
+ # value=0.0,
125
+ # )
126
+
127
+ # num_inference_steps = gr.Slider(
128
+ # label="Number of inference steps",
129
+ # minimum=1,
130
+ # maximum=12,
131
+ # step=1,
132
+ # value=2,
133
+ # )
134
+
135
+ # gr.Examples(
136
+ # examples = examples,
137
+ # inputs = [prompt]
138
+ # )
139
+
140
+ # run_button.click(
141
+ # fn = infer,
142
+ # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
+ # outputs = [result]
144
+ # )
145
+
146
+ # demo.queue().launch()
147
+
148
+
149
  import gradio as gr
150
  import numpy as np
151
  import random
 
185
 
186
  return image
187
 
188
+ from transformers import pipeline
189
+ classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
190
+
191
+ def analyze_sentiment(text):
192
+ results = classifier(text, ["positive", "negative", "neutral"], multi_label=True)
193
+ sentiment = max(results['labels'], key=results['scores'].__getitem__)
194
+ return sentiment
195
+
196
  examples = [
197
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
198
+ "An astronaut riding a green horse",
199
+ "A delicious ceviche cheesecake slice",
200
  ]
201
 
202
  css="""
203
  #col-container {
204
+ margin: 0 auto;
205
+ max-width: 520px;
206
  }
207
  """
208
 
209
  if torch.cuda.is_available():
210
+ power_device = "GPU"
211
  else:
212
+ power_device = "CPU"
213
 
214
  with gr.Blocks(css=css) as demo:
215
+
216
+ with gr.Column(elem_id="col-container"):
217
+ gr.Markdown(f"""
218
+ # Text-to-Image Gradio Template
219
+ Currently running on {power_device}.
220
+ """)
221
 
222
+ with gr.Row():
223
+ prompt = gr.Text(
224
+ label="Prompt",
225
+ show_label=False,
226
+ max_lines=1,
227
+ placeholder="Enter your prompt",
228
+ container=False,
229
+ )
230
+
231
+ run_button = gr.Button("Run", scale=0)
232
+
233
+ sentiment_text = gr.Text(label="Sentiment:", show_label=True, value="", editable=False)
234
+ result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
 
235
 
236
+ with gr.Accordion("Advanced Settings", open=False):
237
+ negative_prompt = gr.Text(
238
+ label="Negative prompt",
239
+ max_lines=1,
240
+ placeholder="Enter a negative prompt",
241
+ visible=False,
242
+ )
243
+
244
+ seed = gr.Slider(
245
+ label="Seed",
246
+ minimum=0,
247
+ maximum=MAX_SEED,
248
+ step=1,
249
+ value=0,
250
+ )
251
+
252
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
253
+
254
+ with gr.Row():
255
+ width = gr.Slider(
256
+ label="Width",
257
+ minimum=256,
258
+ maximum=MAX_IMAGE_SIZE,
259
+ step=32,
260
+ value=512,
261
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
+ height = gr.Slider(
264
+ label="Height",
265
+ minimum=256,
266
+ maximum=MAX_IMAGE_SIZE,
267
+ step=32,
268
+ value=512,
269
  )
270
+
271
+ with gr.Row():
272
+ guidance_scale = gr.Slider(
273
+ label="Guidance scale",
274
+ minimum=0.0,
275
+ maximum=10.0,
276
+ step=0.1,
277
+ value=0.0,
278
+ )
279
+
280
+ num_inference_steps = gr.Slider(
281
+ label="Number of inference steps",
282
+ minimum=1,
283
+ maximum=12,
284
+ step=1,
285
+ value=2,
286
+ )
287
+
288
+ gr.Examples(
289
+ examples = examples,
290
+ inputs = [prompt]
291
  )
292
 
293
+ run_button.click(
294
+ fn = infer,
295
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
296
+ outputs = [result, sentiment_text] # Update outputs to include sentiment text
297
+ )
298
+
299
+ demo.queue().launch()